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Abstract

In this dissertation I propose a shift in the foundations of computation. Modern
programming systems are not expressive enough. The traditional image of a single
computer that has global effects on a large memory is too restrictive. The prop-
agation paradigm replaces this with computing by networks of local, independent,
stateless machines interconnected with stateful storage cells. In so doing, it offers
great flexibility and expressive power, and has therefore been much studied, but has
not yet been tamed for general-purpose computation. The novel insight that should
finally permit computing with general-purpose propagation is that a cell should not
be seen as storing a value, but as accumulating information about a value.

Various forms of the general idea of propagation have been used with great suc-
cess for various special purposes; perhaps the most immediate example is constraint
propagation in constraint satisfaction systems. This success is evidence both that tra-
ditional linear computation is not expressive enough, and that propagation is more
expressive. These special-purpose systems, however, are all complex and all different,
and neither compose well, nor interoperate well, nor generalize well. A foundational
layer is missing.

I present in this dissertation the design and implementation of a prototype general-
purpose propagation system. I argue that the structure of the prototype follows from
the overarching principle of computing by propagation and of storage by accumulat-
ing information—there are no important arbitrary decisions. I illustrate on several
worked examples how the resulting organization supports arbitrary computation; re-
covers the expressivity benefits that have been derived from special-purpose propa-
gation systems in a single general-purpose framework, allowing them to compose and
interoperate; and offers further expressive power beyond what we have known in the
past. I reflect on the new light the propagation perspective sheds on the deep nature
of computation.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic (Matsushita) Professor of Electrical Engineering
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Chapter 1

Time for a Revolution

*** TODO (Optional): Chapter quote: Augustine, Book 11, Section 11.14.17(?)
“What, then, is time?” ***

1.1 Expression Evaluation has been Wonderful

Evaluation of expressions is the fundamental paradigm underlying almost all modern pro-
gramming languages. A program is a series of expressions, evaluated either for their value
or for their effect. Each expression is of some kind (constant, function call, definition, etc.),
and is either atomic or has subexpressions. Evaluation proceeds by structural recursion on
the expressions, evaluating the atomic expressions directly, and evaluating the compound
expressions by appropriately combining the values of their subexpressions.

This paradigm is exemplified perhaps most clearly by eval/apply interpreters for Lisp
dialects like Scheme [2]. Eval interprets each expression, and recurs on the subexpressions;
apply handles primitives and abstracted compounds (which involves recusive calls to eval
on the bodies of those abstractions). The variations on the theme are endless—some are
interpreted, some are compiled, some have type systems, some lack garbage collectors, and
the essential paradigm is clearer in some than in others—but this fundamental recursion
runs through nearly everything we think of as programming.

In order that it be clearer which way I intend to move forward from expressions, let
me take a paragraph to look backward. Just as most high-level languages follow the ex-
pression paradigm, assembly languages follow another paradigm. The assembly language
paradigm is a loop that executes instructions in sequence (and some instructions interrupt
the sequence and cause the executor to jump somewhere else). On the one hand, this is
easier to think about and implement, to the point that this is what we collectively chose to
implement in our hardware. On the other hand, the only difference between instructions
and expressions is that instructions are all atomic—there are no arbitrary combinations of
instructions from subinstructions. *** TODO (Optional): Clarify that I don’t mean
PDP6 or horizontal-microcode style compositional instruction langauges, but
that instructions do not produce results that one can recombine with. *** So ex-
pressions generalize instructions, and are therefore a more flexible and expressive paradigm;
and the investment in learning to program with expressions rather than instructions pays
immeasurable dividends in all aspects of computing.1

1Except performance on microbenchmarks!
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1.2 But we want More

A wonderful engine of practical and theoretical progress though the expression evaluation
paradigm has been, computer science as a field is reaching for even more. The constraint sat-
isfaction community (e.g., [55]) seeks to solve simultaneous systems of constraints, thinking
about different constraints and different attempted values as needed; The logic program-
ming community *** TODO (Optional): (e.g., [?]) *** promises automated reasoning
over declared logical relations, deducing in whatever order is best; The functional reactive
programming community (e.g., [11]) offers elegant responsiveness to changing inputs, alle-
viating worries about what piece of state to update in response to what action. And we all
worry about the impending “concurrency problem”. *** TODO (Optional): Mention
dataflow programming? ***

1.3 We want more freedom from Time

Why? Why is evaluation of expressions, which has served us so faithfully for half a century,
not good enough for all these people? The fundamental problem is time. Time in evaluation-
land is fundamentally constrained. The successful evaluation of an individual expression,
or, equivalently, the successful production of an individual value, inescapably marks a point
in time. The work done to produce that value came before; the work that will be done
using that value comes after.2 *** TODO (Optional): This is why the paradigm
is so inappropriate for so many problems. There is no provision for getting a
partial result, starting to use it, and then going back and refining it further.
You also know nothing about what will happen to a value before you are done
producing it. But how do I work that thread in? It seems that just as the answer
is two-pronged, so is the question. Propagation answers the question about
time. Partialness is inextricable from propagation; so now I am discovering
that entireness, the fact that values have to transferred whole from producers
to consumers, is just as much a culprit and a question as time. *** That inevitable
limitation manifests as the sequencing of operations by the evaluator. Since the evaluator
works by structural recursion on the expressions that comprise a program, the structure of
the program text constrains the flow of time through that program. Thus, while a program
must serve as the description of what we want accomplished, its shape excessively constrains
the process, and therefore how the computer accomplishes it.

Each thing I alluded to in Section 1.2 is either a worry about or an escape from the
rigidity of time. The “concurrency problem” worries about how to live with many parallel
threads of time instead of just the one that the normal eval/apply loop provides. Constraint
solvers examine their constraints in whatever order seems auspicious, and as many times as
needed. Logic programs consider their clauses in an order determined by their search, and
are free to change their mind and backtrack. Functional reactive systems react to whatever
event happens next. In each case, time doesn’t want to be a simple line: Maybe it’s several
communicating threads, maybe it needs to bounce around the constraints or deductions
at will, maybe it needs to start and stop in response to user actions, but in each case the

2Lazy evaluation is based on the observation that merely passing some value as an argument to a function,
or merely storing a reference to that value in a data structure, does not constitute using it until the program
does something sufficiently primitive with that value (like trying to print it to the screen, or trying hand
it to the floating point unit so it can be added to 1.7320508075688772). This relaxes Time’s stranglehold
somewhat, but evidently not enough. We will return to the relationship between propagation and normal
and applicative order evaluation in Section 6.2.5.
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orderly progression of eval/apply time is a yoke.
*** TODO (Optional): The fact that separate subexpressions of the same

expression may perhaps be evaluated in an unspecified order [32], or even in
parallel [3], means that time is not entirely linear, but it is still at least piecewise-
linear, with perhaps specific (relatively uncommon) points of uncertainty or
branching.3 ***

1.4 Propagation promises Liberty

Fortunately, there is a common theme in all these efforts to escape temporal tyranny. The
commonality is to organize computation as a network of interconnected machines of some
kind, each of which is free to run when it pleases, propagating information around the
network as proves possible. The consequence of this freedom is that the structure of the
aggregate does not impose an order of time. Instead the implementation, be it a constraint
solver, or a logic programming system, or a functional reactive system, or what have you is
free to attend to each conceptual machine as it pleases, and allow the order of operations
to be determined by the needs of the solution of the problem at hand, rather then the
structure of the problem’s description.

Unfortunately, the current state of the art of this organizational paradigm is somewhere
between a vague generalization and an informal design pattern. On the one hand, every
system that needs not to be a slave to time does something philosophically similar, but
on the other hand, they all constitute different detailed manifestations of that common
idea. What’s worse, each manifestation is tailored to its specific purpose, each is complex,
and none of them compose or interoperate. We have an archipelago of special-purpose
propagation systems, drowning in a sea of restrictive linear time.

In this dissertation I demonstrate a general-purpose propagation system. I show that
propagation subsumes evaluation (of expressions) the same way that evaluation subsumes
execution (of instructions). I show that with appropriate choices of what to propagate, the
general purpose system can be specialized to all the purposes listed above, and then some.
I show how basing these specializations upon a common infrastructure allows those systems
to compose, producing novel effects. Finally, I will show how the propagation lens casts a
new light on several major themes of computer science.

I believe that general-purpose propagation offers an opportunity of revolutionary magni-
tude. The move from instructions to expressions led to an immense gain in the expressive
power of programming langauges, and therefore in understanding of computers and produc-
tivity when building computing artifacts. The move from expressions to propagators is the
next step in that path. This dissertation merely lifts one foot—who knows what wonders
lie just around the corner?

3In fact, the very existence of call-with-current-continunation is evidence that something is amiss, be-
cause that procedure promises to return a reification of the entire future!
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Chapter 2

Design Principles

Having expounded at length on the advantages to be gained from building a propagation
infrastructure, let us proceed now to consider how one should be built. The purpose of
the present chapter is to present and motivate several design principles. These principles
guide the detailed choices of the propagation prototype presented in Chapter 3 and used
and discussed in the remainder of this dissertation; they furthermore constitute my recom-
mendation for how general-purpose propagation systems should be built, once granted that
the aim is to gain the expressive power that flows from freedom from Time.

While historically these design principles emerged over time as we experimented with one
variation on the propagation theme after another, now that they are discovered they form
a coherent whole, and flow, in retrospect, from our stated purpose. I can therefore afford to
present them on their own merits, with the promise that they turned out to actually work
as my evidence of their validity, rather than documenting the tortuous intellectual path, full
as it was of unexplored side avenues, that led here. My purpose in so doing is the greatest
clarity of exposition, rather than any claim that we were able to get away with building the
prototype in as Waterfall [46] a style as it is being presented.

2.1 Propagators are asynchronous, autonomous, and state-
less

We want to break free of the tyranny of linear time by arranging computation as a network
of autonomous but interconnected machines. How should we architect such a network?
What do we want to say about the nature of the machines?

To be explicit about the events in the system, let us say that the machines are not
connected to each other directly, but through shared locations that can remember things
which interested machines can read and write. Such locations are traditionally called cells.
As the machines communicate with each other and perform their various computations,
information will propagate through the cells of the network. The machines are for this
reason traditionally called propagators. See, for example, Figure 2-1.

The purpose of all this is to avoid too early a commitment to the timing of events in
our computers, so that the computers can decide for themselves in what order to do things,
guided by what they discover when performing the tasks we assign to them. We should
consequently not build into our infrastructure any timing commitments we can possibly
avoid.

Let us therefore posit that our propagators are of themselves memoryless. The idea of
memory is inextricably entwined with the idea of time, so let us push all memory out of

15



f(x,y)
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h

Figure 2-1: A sample fragment of a propagator network. Information about x and y has just
propagated through f ; now g and h have an input they can work on. The black semicircle
marks y as the second argument of the (presumably non-commutative) function f .

our computing propagators, and into the cells, who are dedicated to dealing with memory
anyway. We lose no generality by doing this, because we can always equip any machine that
needs to appear stateful with a private cell to hold its state. With this commitment, the
actions of any propagator are determined entirely by the contents of the cells it examines,
whereas the contents of any cell are determined entirely by the actions of the propagators
that write to it.1

Let us likewise posit that our propagators are autonomous, asynchronous, and always
on—always ready to perform their respective computations. This way, there is no notion
of time embedded in questions of which device might do something when, for they are all
always free to do what they wish. Since the cells are the system’s memory, it is the cells’
responsibility to provide interlocks appropriately to prevent any nasty memory corruption
problems, and to prevent propagators from seeing the contents of an individual cell in an
inconsistent state.2

This dissertation takes these ground rules as axiomatic. Doubtless there are other philo-
sophical foundations on which to rest an exploration of computer architectures that break
free of an excessive dependence on time, but I have chosen to study these. I hope to convince
you in the rest of this text that these principles cause no uncomfortable restrictions, and
allow systems that are both elegant and expressive—more expressive, as promised, than
those following the expression evaluation strategy.

2.2 We simulate the network until quiescence

One might say that the very purpose of programming is to avoid having to physically
construct the machine that is notionally performing one’s computation, and instead merely
to simulate that machine on just one physical universal computer.

Let us therefore posit further that as our objective is expressive programming, we are

1Of course, not all of the computing world can be so nicely arranged. There are keyboards, hard disks,
displays, network ports, robot sensors and actuators, and many other things that don’t look like propagators
that read only their cells and cells that receive input only from their propagators. Something else will have
to happen at the boundaries of this system. *** TODO (Optional): Make a concrete promise here,
or at least a concrete forward reference. *** We will return to this topic as it arises throughout the
dissertation.

2It is important that these are perfectly local locks. We are not trying to enforce any global consistency
notions—those will have to be emergent properties of the network. But we do want local consistency from
the lowest-level primitives in the system.
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explicitly interested in computation by networks of simulated autonomous interconnected
machines. We therefore will not restrict our attention only to propagators that could be
implemented directly as physical devices.

Because we are after independence from time, we will not3 use these devices to engineer
systems with a particular evolution or sequence of states. Rather, our aim is to build systems
whose steady state, after the transient consequences of adding the inputs have died down, is
predictable; and to express whatever computations we want in the mapping between those
inputs and those steady states.

The objective of our simulation of such a system is then the faithful computation of
such a steady, or quiescent ,4 if you will, state, rather than the faithful reproduction of the
intermediate states that lead up to it. As a consequence of that, of course, the simulation
is very interested in detecting when such a quiescent state obtains.

We will simulate our primitive propagators with corresponding Scheme programs. We will
presume that a single run of such a program suffices to model everything such a propagator
will do on given inputs (excluding any possible consequences of its modifying its own inputs).
A propagator can therefore be assumed to be quiescent if its inputs have not changed after
the last time it started to run. Detecting the quiescence of a network, or a region thereof,
thus reduces to detecting whether or not the contents of cells have changed; it is natural to
make the cells responsible for this.

2.3 Cells accumulate information

I am accepting the above propagator design principles at all because they worked (well
enough to produce this dissertation, anyway); I am taking them as axioms because I have
only the vague generalizations provided above as evidence that they are the only principles
that would have worked. The first contribution of this work is that they entail a design
principle applicable to cells, which in fact constitutes a shift of perspective from how such
systems have been built previously.

The unquestioned assumption of previous generations of propagation systems has been
that cells hold values—complete, finished, fully computed answers. This is a natural enough
idea: a variable in a normal programming language is a thing that holds a value, so why
should a cell in a propagator system be any different? In fact, I suspect that this fun-
damental, unquestioned idea is the underlying cause of the Babel of different, complex,
incompatible special-purpose propagation systems that exist today.

I propose, in contrast, that we should think of a cell as a thing that accumulates infor-
mation about a value. The information can perhaps be incomplete: some propagator may
tell a cell something that is on the one hand useful but on the other hand does not deter-
mine that cell’s value unconditionally. If so, the cell should readily offer that knowledge
to other propagators that may ask, and stand ready to incorporate any improvements or
refinements of that information, from any source. Instead of always demanding finished
products of our computations, we are willing to accept “works in progress,” which are both
potentially already useful but also open to further improvement.

3By and large, but see Section 7.3.

4By “quiescent” I mean “no propagator will add any more information to any cell without further input
from outside the network.” This is only the simplest idea of “steady state.” One could also imagine various
propagator networks that asymptotically approach a certain state but never fully reach it. Arranging such
a network might also be useful, but quiescence will suffice to make an interesting enough system for the
purpose of this dissertation. We will therefore satisfy ourselves with it entirely, except to touch on tantalizing
alternatives in Section 6.4.
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Accumulating information is a generalization of the idea of holding values, because a
value can always be interpreted as the information that says “I know exactly what this
value is, and it is x;” and the absence of a value can be interpreted as information that says
“I know absolutely nothing about what this value is.” This is not an abstract generalization:
it solves the architectural problems that have plagued propagation systems in the past, and
eliminates the core reason for their variations and complexities.

The particular knowledge representation can and should vary from problem to problem.
Varying them is a way to adapt the propagation system to exhibit different behaviors and
serve different purposes; but the contract for knowledge representations defines a module
boundary separating the complexity of each particular representation from the core prop-
agation substrate. Making the different information structures interact with each other
usefully can still be a hard problem, but this architecture at leaves gives them a common
medium they can share, making composition and compatibility that much easier.

The basic philosophical reason why cells must accumulate incrementally refinable infor-
mation is that computation in propagation networks is essentially multidirectional. Since
several propagators can point into the same cell, there is no reason to demand that just one of
them be responsible for producing the whole of that cell’s contents. In fact, the whole point
of building propagation systems is to capitalize on the possibility of multidirectionality—
and to do that, each cell must be able to accept and merge all the contributions of all the
propagators that might write to it. But don’t take my word for it: let’s have a concrete
look at the consequences of assuming that cells store values.

2.3.1 Why don’t cells store values?

Why do we need to do this accumulating information thing? Does the “cells store values”
architecture really lead to inevitable trouble? What goes wrong?

Things go wrong when one starts trying to implement cells that hold values, and discovers
oneself doing kludgerous things. Let us imagine, in our mind’s eye, writing a procedure for
adding a value to a cell:

(define (add-value cell value)
(if (empty? cell)

(begin
(set-cell-value! cell value)
(note-cell-change cell))

???))

If the cell is empty, then we add the value, and notify the simulator that this cell’s value
changed, so that it knows that the propagators that read that cell have not quiesced yet.
But what should we do if we are adding a value to a cell that already has a value?

Our unquestioned assumption doesn’t help here. The rule is supposed to be “a cell holds
a value,” but if there are competing values, the rule doesn’t say anything about which value
should win or what should happen. So, in the absence of principled guidance, we have to
make an arbitrary choice.

Arbitrary choices are dangerous: one might unwittingly choose an option that specializes
the system to one’s particular purpose, and others might make the same choice differently,
leading to incompatibilities. But we are courageous programming language designers, so
that danger does not stop us.

Since we’re writing a piece of code that embodies an arbitrary choice, we would like that
code to be as simple as possible. If something sufficiently simple works and does everything
we want, that is a powerful affirmation—simplicity and elegance go hand in hand with
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correctness and generality [40]. Perhaps our principle even dictated that solution after all,
be we were just not smart enough to see it at first.

2.3.2 Because trying to store values causes trouble

So what is the simplest way we can fill in those ??? question marks? The three simplest
options don’t involve examining the present or the incoming value. They are

A. Drop the second value on the floor,

B. Overwrite the first value, or

C. Forbid the event (signal an error).

Let us examine each in turn.

Option A
What can we do with a second value without looking at it? Option A: Drop it on the floor.
The code is simple indeed; we replace the question marks with a noop:

(define (add-value cell value)
(if (empty? cell)

(begin
(set-cell-value! cell value)
(note-cell-change cell))

’ok))

Sadly, this doesn’t work. This strategy causes practical trouble if more than one propa-
gator might write a value to a cell, and if those propagators might disagree. For example,
we might have liked to build a constraint system where the constraints were implemented
by attaching mutually-inverse propagators to the same cells. But if we did that, and wired
up a single cell to be part of more than one constraint (which is presumably the point),
our constraint system might fail to enforce the constraints. Take, for instance, the sum
constraint shown in Figure 2-2. Suppose the one, two, and six were added to the cells of the
constraint before any of the constraint’s propagators got a chance to run. Then when the
constraint’s propagators do run, the cells will drop the competing values those propagators
will try to put there, and the constraint will go unenforced.

Now, we could try to solve this problem of constraint non-enforcement somewhere other
than the cells. For instance, we could try to make sure that the network never sees an
inconsistency like this by always running the whole thing to quiescence between supplied
inputs. That’s a terrible idea, because it imposes horrendous global constraints on the
timings of things that happen; and what if the conflicting inputs are produced by some
yet other program, rather than a human user? Where then are the boundaries where
contradictions can be detected?

Or, alternately, we could try to build constraints that actually constrain with a network
construction discipline such that whenever two propagators could disagree, there was some
third propagator around to look at both their outputs and compare them, and arbitrate
between them. But imposing such a discipline is also complexity added to the fundamental
infrastructure, and this extra complexity is far greater than just making the cells a little
smarter. So that’s not a good way out either.

The philosophical reason the “Drop the second value on the floor” strategy is not a
good idea is that now cells, and therefore the network taken as a whole, can ignore what
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Figure 2-2: If cells drop second values, “constraints” don’t constrain.

propagators do under some circumstances (namely the circumstance that the cell already
has a value). This violates the “always-on machines” vision, and thus causes endless trouble.

Option B
What else can we do with a second value without looking at it? Option B: Always overwrite
the first value. The code to implement that is even simpler:

(define (add-value cell value)
;; Don’t even have the if
(set-cell-value! cell value)
(note-cell-change cell))

Unfortunately, always overwriting is no good either. Consider, for example, a loop in
the network, like in Figure 2-3. Even though there is nothing more to discover after the
third cell’s value has been filled in, the network continues to appear active, writing limitless
repetitions of the same thing to the various cells. If the cells do not notice that the new
incoming values are redundant, no one will be able to tell that the system is stable and the
simulator should stop running these computations.

Previous efforts have considered solving this artificial instability in other places, for in-
stance by adjusting the simulator not to rerun propagators that go “backward”. This
amounts to predicting all the loops in the network structure, and trying to arrange that
they are not repeated excessively. Needless to say that approach doesn’t scale—there’s no
good general way to identify all loops in advance, and even if there were, there still wouldn’t
be any good general way to know which way is “backward”. Trying to play a game like
that also introduces additional unnecessary complexity into the scheduler, and therefore
into the system’s notion of time. And even if one could get the network to stabilize if the
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Figure 2-3: If cells always overwrite, loops buzz.

propagators agree, there would still be oscillations or race conditions if the propagators
disagreed.

The fundamental reason overwriting the old value is not a good idea is that it reintroduces
time, because now something changes: there was an old value that used to be there in the
past, but when the new value gets written, the old value is gone. So now there’s time, and
you start worrying about the scheduler, and you’ve defeated the purpose.

Option C
What else can we do with a second value without looking at it? Option C: Forbid it. This
code is also simple,

(define (add-value cell value)
(if (empty? cell)

(begin
(set-cell-value! cell value)
(note-cell-change cell))

(error "Contradiction")))

but this is not a good idea either, because it just pushes the problem somewhere else. Now
you either have to play with the scheduler again, or all the propagators have to do something
like option A or option B, or some other such loss happens. If the cells are the repositories
of state, then dealing with multiple requests to store state is their job.

Out of options
And that’s it. Since none of that works, you have to look at the values to decide what to
do with them. This is a bit scary: cells are supposed to be value-storing machines, but it
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seems they can’t just accept their values as sealed boxes—they have to look inside. But we
are courageous programming language designers, so that little fear does not stop us. What,
then, is the next best thing to do? We have an equality test.

(define (add-value cell value)
(if (empty? cell)

(begin
(set-cell-value! cell value)
(note-cell-change cell))

(if (equal? value (current-value cell))
’ok
(error "Contradiction"))))

Well, that looks better: the buzzes stop, and the constraints still constrain. Unfortu-
nately, we have now baked in the notion of equality. This is not good; our propagation
infrastructure is now assuming something about the data it is pushing around: that the
right way to resolve conflicts is with an equality test. We have made another arbitrary
choice.

That choice turns out to be wrong.5 Suppose we want to augment our network with
dependency tracking, as [51] has and as we will in Chapter 4. Then the cells should hold
a value augmented with its justification. But what do we do if we get two identical values
with different justifications? Surely that is not really a contradiction, but our equality test
betrays us. So we need something more elaborate.

Or suppose instead we want to use our network for contraint satisfaction by domain
reduction, as [55] has and as we will in Section 5.3. Then the cells will hold some repre-
sentation of the domain of some variable. So what do we do if a domain gets narrowed
down? We don’t want to compare the domains for equality, that is certain. Again we need
something more elaborate. And this time it’s something different.

Or suppose instead we want to use our network for functional reactive programming, as
[11] has and as we will in Section 5.5. Then the cells will contain values that may be stale or
fresh. So what do we do if some cell contains a stale value and a different fresh value shows
up? Again comparing them for equality is the wrong thing. Again we need something more
elaborate. And this time it’s something yet different again.

Having opened the Pandora’s box [6] of arbitrary decisions, we are faced with more and
more of them, each tugging in different directions. Whatever each implementor’s actual
purpose is, each propagation system will end up being specialized to that purpose, and
none of them will compose or interoperate well with one another. Starting with cells that
store values leads into a maze of differences and incompatibilities.

2.3.3 And accumulating information is better

We solve this pile of problems at a stroke by changing the mindset. Instead of thinking of a
cell as an object that stores a value, think of a cell as an object that stores everything you
know about a value. Suddenly, everything falls into place. “Empty” cells stop being special:
that’s just a cell that doesn’t know anything yet. “Second values” stop causing problems:
that’s just more information. The grotty equality test becomes a test for redundancy of
new information, and the contradiction from different values becomes a contradiction from
completely irreconcilable information. We will see later that dependency tracking, and many
many other things, fall neatly under the accumulating information umbrella; the point of

5As all arbitrary choices eventually do, if one varies the purpose against which they are evaluated.
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this dissertation is that propagating and accumulating partial information is enough for a
complete, expressive, and flexible model of computation.

It is important that this be accumulating partial information: it must never be lost or
replaced. A cell’s promise to remember everything it was ever told6 is crucial to gaining
freedom from time. After all, if a cell could forget something that mattered, then all its
neighbors would have to run before it forgot. But they can only remember things by writing
them to other cells, which in turn can forget, so their neighbors must read them within a
certain amount of time. . . and there is Time again. So cells must not forget.

The idea of accumulating partial information is a module boundary. It separates the
essential core of propagation from the various complexities of dealing with the things being
propagated. If one wants to propagate numbers, one will still need to test them for equality
to detect collisions. If one wants to track dependencies, one will still need to wrangle truth
maintenance systems. If one wants to do something else, one will still need to write the
code that does it. But now these problems are separated from the core of propagation, and
from each other, so they can be built additively and speak a common propagation language.
That language can allow them to be written so as to compose and interoperate—it is a more
expressive foundation on which we can create a higher level of abstraction.

6Except when the system can prove that particular things will never matter again. This is analogous to
garbage collection in modern memory-managed systems.
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Chapter 3

Core Implementation

Having considered in some depth the overarching design principles we will follow in building
our propagation infrastructure, let us proceed now to exhibit one. We have built it in
software, in fact as a prototype embedded in MIT Scheme [21], because that’s the easiest
way for me to think about things like this. The construction of this prototype was too
difficult an exercise in exploration for me to have undertaken the corresponding exercise in
engineering; it will consequently win no prizes for speed, but I expect an implementation of
reasonable alacrity to be a Simple Matter of Programming (with all the attendant technical
but not ideological challenges).

This chapter motivates a particular detailed core propagation infrastructure with a series
of examples, and shows the interesting portions of its implementation with a series of Scheme
code fragements (the remaining details are recorded in Appendix A). We will reflect at the
end of the chapter on why the result is more flexible than the evaluation of expressions, and
then the next chapter will then expand on that with the first of a series of illustrations of
the greater expressive power gained by treating propagation as fundamental to computing.

The presentation of this prototype is structured as a gradual buildup. We begin with the
simplest possible thing in Section 3.1; we observe that even this is interesting in Section 3.2;
we vary the simple thing in Section 3.3, finding that our design principles from Chapter 2
do not lead us astray; and we generalize that variation in Section 3.4 to reach the promised
generality and flexibility. Remeber as you read that this chapter presents the basic fabric
of computation that I am proposing; Chapters 4 and 5 are about why this is fabric is
interesting, and it is only in Chapter 6 that I will get down to the business of sewing the
Emperor’s [4] new clothes out of it.

3.1 Numbers are easy to propagate

To recap, our computational model is a network of autonomous machines, each continuously
examining its inputs and producing outputs when possible. The inputs and outputs of a
machine are shared with other machines so that the outputs of one machine can be used
as the inputs for another. The shared communication mechanism is called a cell and the
machines that they interconnect are called propagators. As a consequence of this viewpoint
computational mechanisms are naturally seen as wiring diagrams.

Since we have been talking in abstract terms so far, you must be yearning for a concrete
example. Let’s start with something elementary: the classic [51] problem of converting
temperatures from Fahrenheit into Celsius. There won’t be any stunning insights from this
section, but we will lay the foundation on which everything else can be built.

If we have a Fahrenheit temparture in cell f , we can put the corresponding Celsius
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Figure 3-1: A Fahrenheit to Celsius converter network

temperature in cell c by the formula c = (f − 32) ∗ 5/9. The wiring diagram of a network
for computing this formula is shown in Figure 3-1. We can describe this wiring diagram in
a conventional programming language (Scheme) by the following ugly code:

(define (fahrenheit->celsius f c)
(let ((thirty-two (make-cell))

(f-32 (make-cell))
(five (make-cell))
(c*9 (make-cell))
(nine (make-cell)))

((constant 32) thirty-two)
((constant 5) five)
((constant 9) nine)
(subtractor f thirty-two f-32)
(multiplier f-32 five c*9)
(divider c*9 nine c)))

Considered as a way to compute c = (f − 32) ∗ 5/9, this code is of course overly verbose,
but it does correspond directly to the wiring diagram we are trying to represent. We have
chosen, for this prototype, to represent wiring diagrams by Scheme procedures that will
attach copies of said wiring diagrams to given boundary cells. Thus multiplier, divider,
and subtractor are primitive, one-propagator “wiring diagrams”—Scheme procedures (to
be defined forthwith) that will attach a fresh propagator of the corresponding kind to
whatever cells we wish. Likewise constant, also awaiting momentary definition, is a wiring
diagram generator: for any fixed value x, (constant x) stands ready to equip a cell with a
propagator that will emit x. The last primitive this example uses is make-cell, whose job
of making a fresh cell is the simplest of description, but as we shall soon see, the longest of
implementation.

The propagator wiring diagram is very low level, and in that sense more analogous to
assembly language than to the expression languages that we are used to. Working with
the low-level descriptions, however, clarifies the infrastructure we are building, for it is not
obscured with syntactic sugar. This is also simpler for the nonce, because there is no need
to implement that sugar yet.

To use this network we need to use make-cell to make cells to pass in to this network
constructor. We also need to use the cell operation add-content to give the Celsius cell a
value, and then content to get the answer from the Fahrenheit cell:
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Figure 3-2: A Fahrenheit to Celsius converter network that has converted 77F to 25C

(define f (make-cell))
(define c (make-cell))

(fahrenheit->celsius f c)

(add-content f 77)
(content c)
25

So this simple propagator network gave the right answer. The final state of the network
is shown in Figure 3-2. This network is like a paper plate that’s not being watched by
an environmentalist: you only use it once. There is no way to “take the 77 out” and
use these same propagators again to convert another temperature—intentionally! The 77
is Information and, per our design principle in Section 2.3.3, Information must never be
forgotten. It so happens that the 77 is complete information, not open to refinement, so
this network is now done. That’s not a problem: we can always make more copies of it. In
a sense, this network is like the execution of a bit of program, not like its source code. We
will consider our options for arranging reuse of networks (or their wiring diagrams) when
we consider abstraction in Section 6.2. Until then, we will study propagator networks that
behave like program executions; they are fascinating enough!

In the remainder of this section, we will implement the machine that makes this simple
network structure go; and we will show off something cool about it in Section 3.2. Then in
the rest of this chapter, we will expand this infrastructure to propagate partial information
as well—first a specific kind in Section 3.3, just to get the idea, and then generalize to all
kinds in Section 3.4—whereupon we will be ready to spend Chapters 4 and 5 building all
sorts of systems on this foundation.

It is worth noting that even this simplest of structures (if augmented with an appropriate
collection of the facilities discussed in Chapter 6) already recovers expression evaluation as
a special case. After all, an expression maps perfectly well into a tree of propagators, one
for each subexpression, with a cell for each intermediate value. Our notation for such a tree
may be clumsier than the expressions we are used to programming with, but building too
familiar a syntax may trap us in habitual modes of thought and obscure the fundamental
expressiveness of propagation. Rather than going down that path, and rather than looking
to the seams and stitches that await in Chapter 6, let us instead weave the fabric this demo
has promised, and see in the following sections and chapters what makes it worthwhile.
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An interlude on simulation
What does it take to make this basic example work? The zeroth thing we need is a means
to simulate our propagator network in Scheme, as discussed in Section 2.2. The simulation
is done by a software job queue. The scheduler is not very sophisticated because this is
a prototype whose purpose is to study the essential nature of propagation. A production
system based on these principles might dedicate hardware to some propagators, or timeshare
batches of propagators on various cores of a multicore processor, or do arbitrarily fancy
distributed, decentralized, buzzword-compliant acrobatics. We don’t want to worry about
any of that now. We want, rather, to learn how to design propagator networks that get the
right answers independently of such matters, and thus give the performance gurus free rein
to optimize, parallelize, distribute, and comply with buzzwords to their hearts’ content. We
will gain our expressive power even without sophisticated execution strategies.

This dissertation, therefore, uses a relatively boring software scheduler that maintains a
queue of pending propagators, picking them off one by one and running them until there
are no more. The code for that scheduler is not worth presenting here, so it is banished to
Appendix A.2. We will return to interesting questions about scheduling in Section 6.4; let
us just summarize the matter here by listing the promises this scheduler gives us:

• Propagators are run in an arbitrary, unpredictable order. This is important because
we don’t want to accidentally depend on the order of their execution.

• Once a propagator is run, by default it will not run again unless it gets queued again.

• Every propagator that is queued will eventually run.1

• Every execution of every propagator, including every read and every write of every
cell, is atomic. This is an accident of the scheduler’s being single-threaded, but it
does save us the confusion of cluttering our exploratory code with interlocks.

This relatively loose set of demands on the scheduler follows directly from our stated
objective. The scheduler is the custodian of time in our simulation. Since the whole point
of studying these systems is to program without being unduly constrained by time, the
scheduler must not impose any particular flow of time on our networks. These properties are
the closest I could get to running lots of asynchronous little machines on one big computer
(without killing myself with random uninteresting multithreading bugs).

In order to maintain the illusion of always-on machines, we will also need to impose a
discipline on our cells and propagators. Each primitive propagator will need to promise that
a single execution is enough for it to do everything it will do with its currently available
inputs. In other words, the software propagator must accomplish, in its one execution,
everything the autonomous device it represents would have done with those inputs. This
has the effect that the propagator will not need to be run again unless its inputs change.
The cells will also need to maintain the invariant that every propagator that might do
anything if it were run, that is, one whose inputs have changed since the last time it ran,2

is indeed queued to run.
Given those promises and that discipline, the job queue becomes a quiescence detector—

the non-quiesced propagators are exactly the queued ones. Therefore, when the queue is

1Unless the network itself enters an infinite loop. Thoughts about mitigating that possibility are deferred
to Section 6.4.

2This is counted from when the propagator started running, because it might change its own inputs, in
which case it should be eligible for rerunning immediately.
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empty, the simulation can stop and return control to the host Scheme, knowing that it has
produced the desired quiescent state.

Making this work
Besides such a simulator, what else does it take to make this basic example work? We
need only cells and primitive propagators. We don’t need anything else yet, because we are
borrowing it all from the host Scheme.

Cells first—the cells make sense by themselves, whereas propagators are harder to think
about in a vacuum. The cells are the custodians of state. As such, their job is to remember
something. If the propagators really were always on, that would be all. Since our simulator’s
queue needs to be kept up to date, somebody also needs to requeue all the propagators that
are looking at any given cell when that cell’s content changes. Since the cell itself is the
keeper of its own content, it is in the perfect position to be that someone. Therefore,
in addition to its content, each cell also maintains a registry of the propagators that are
watching it, and alerts them when its content changes. We impose a discipline on the
propagators that they must register themselves with the right cells.

Since a freshly created cell has no sensible content until someone adds some, we define a
distinguished object to indicate that a cell contains nothing. Using a distinguished object
rather than, say, a separate boolean flag may seem like an arbitrary decision now, but it
foreshadows the final design we will settle on later.

(define nothing #(*the-nothing*))

(define (nothing? thing)
(eq? thing nothing))

The actual interface to our cells consists of three functions. Content just extracts the cell’s
current content (possibly returning nothing if that’s what the cell’s content is); add-content
adds some content to the cell; and new-neighbor! asserts that a propagator should be
queued when that cell’s content changes. It is important that there is no remove-content
and no alter-content. Our design principle from Section 2.3.3 mandates it, and for good
reason. This way, the scheduler need not promise to run that cell’s neighbors within any
particular amount of time—once content has been put into a cell, that cell will never forget
it. This fact is critical to liberating ourselves form the tyranny of time.

I arbitrarily chose to implement the cells as closures in the message-accepter style. For
simplicity of exposition, I am only supporting a single, specific partial information style in
this particular code. This will let me get the propagation system up and running with a
minimum of immediate fuss, and then we will generalize it in Section 3.4.

(define (content cell)
(cell ’content))

(define (add-content cell increment)
((cell ’add-content) increment))

(define (new-neighbor! cell neighbor)
((cell ’new-neighbor!) neighbor))
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(define (make-cell)
(let ((neighbors ’()) (content nothing))

(define (add-content increment)
(cond ((nothing? increment) ’ok)

((nothing? content)
(set! content increment)
(alert-propagators neighbors))
(else
(if (not (default-equal? content increment))

(error "Ack! Inconsistency!")))))
(define (new-neighbor! new-neighbor)
(if (not (memq new-neighbor neighbors))

(begin
(set! neighbors (cons new-neighbor neighbors))
(alert-propagator new-neighbor))))

(define (me message)
(cond ((eq? message ’content) content)

((eq? message ’add-content) add-content)
((eq? message ’new-neighbor!) new-neighbor!)
(else (error "Unknown message" message))))

me))

There is no great magic going on here. The most interesting of these operations is
add-content. The logic of what add-content does follows from the meaning of a cell’s
content. In these cells, the designated marker nothing means “I know nothing about the
value that should be here,” and any other value x means “I know everything about the value
that should be here, and it is x.” In this simple information regime, only four things can
happen when someone calls add-content on a cell: adding nothing to the cell says “I don’t
know anything about what should be here,” so it’s always ok and does not change the cell’s
content at all. Adding a raw value to a cell amounts to saying “I know that the content of
this cell should be exactly x.” This is fine if the cell knew nothing before, in which case it
now knows its content is x, and alerts anyone who might be interested in that. This is also
fine if the cell already knew its content was3 x, in which case the addition taught it nothing
new (and, notably, its neighbors don’t need to be alerted when this happens). If, however,
the cell already knew that its content was something other than x, then something is amiss.
The only resolution available in this system is to signal an error. Add or add not; there is
no alter.

The new-neighbor! operation adds the given propagator to the cell’s neighbor list. These
are the propagators that will need to be queued when the cell’s content changes. To be
conservative, the cell also queues the new neighbor when the attachment occurs, on the off
chance that said neighbor is interested in what the cell has already.

Propagators
With the cells done, we can finally talk about propagators. We are trying to simulate
always-on machines. The best we can do in Scheme is to periodically run procedures that
do what those machines would do. I chose to ask the user to close those procedures over
the relevant cells manually, so that by the time the scheduler sees them they are nullary.
(We’ll see this happen in a minute.) To bless such a thunk as a propagator, all we have to
do is to attach it as a neighbor to the cells whose contents affect it, and schedule it for the
first time:

3Equality is a tough subject. We sweep it under the rug for now, but that’s ok because it will become
irrelevant later.
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(define (propagator neighbors to-do)
(for-each (lambda (cell)

(new-neighbor! cell to-do))
(listify neighbors))

(alert-propagator to-do))

This procedure arranges, using alert-propagator, for the thunk to-do to be run at least
once, and asks, using new-neighbor!, for each cell in the neighbors argument to have to-do
rerun if that cell’s content changes. Remembering that each call to new-neighbor! also alerts
the propagator, one might wonder “why all the alerting?” It is done as a matter of defensive
programming, and since an alert means “ensure this propagator will run sometime,” alerting
the same propagator many times doesn’t actually cost anything significant.

So that’s the machinery for making general propagators, but to get anywhere we also
need some specific ones. One common kind of propagator propagates the result of running
a normal Scheme function. The procedure function->propagator-constructor makes a
primitive propagator constructor like adder or multiplier. These are the little bits of wiring
diagram we have used before to build bigger wiring diagrams like fahrenheit->celsius;
they are procedures that will, given cells for the function’s inputs and output, construct an
actual propagator.

(define (function->propagator-constructor f)
(lambda cells

(let ((output (car (last-pair cells)))
(inputs (except-last-pair cells)))

(propagator inputs ; The output isn’t a neighbor!4

(lambda ()
(add-content output

(apply f (map content inputs))))))))

This particular function imposes the convention that a propagator accepts its output cell
last; it expects f to actually be a function (but see Section 6.6 for discussion of what to do
if you want f to have side effects whose timing you want to rely upon), and to accept as
many arguments as the eventual propagator has input cells. This is not the only way to
make primitive propagators, but it is the only one we need for the examples we are dealing
with right now.

No one made, and indeed no one should make, any guarantees that the input cells above
will all have non-nothing contents before that propagator is run. Since our Scheme prim-
itives are not natively equipped to handle the nothing token, we must therefore take care
of it ourselves. Fortunately, most functions should return nothing if any of their inputs are
nothing (for instance, adding 2 to a completely unknown value ought very well to have a
completely unknown result) so we can do this very systematically. In our current situation,
the simplest thing to do is to wrap the Scheme primitives in something that will check for
nothings before calling them

(define (handling-nothings f)
(lambda args

(if (any nothing? args)
nothing
(apply f args))))

4Because the function’s activities do not depend upon changes in the content of the output cell.
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and hand that wrapped function to function->propagator-constructor. This strategy
for handling nothings will prove too simple by Section 3.4, but we will wait until then to
upgrade it.

With all this machinery, we can finally define a nice array of primitive propagators that
implement Scheme functions:

(define adder (function->propagator-constructor (handling-nothings +)))
(define subtractor (function->propagator-constructor (handling-nothings -)))
(define multiplier (function->propagator-constructor (handling-nothings *)))
(define divider (function->propagator-constructor (handling-nothings /)))
;;; ... for more primitives see Appendix A.3

Constants also turn out quite nicely,

(define (constant value)
(function->propagator-constructor (lambda () value)))

and that’s all we need to make our temperature conversion example work. We will need
other things for a full programming system; for instance we haven’t dealt with the moral
equivalent of Scheme’s if. But we don’t need them yet, and they will fit in smoothly enough
when we get to them in Chapter 6. Rather than worrying about that, let’s play with this
base, simple as it is, and see what we can make out of it.

3.2 Propagation can go in any direction

The preceding example wasn’t much to write home about. So we can reproduce small ex-
pressions as propagator networks—so what? An evaluator is perfectly good for expressions,
and we haven’t even shown how networks handle recursion or compound data, never mind
higher order functions. Well, recursion can wait until Section 6.2, compound data until
Section 6.3, and higher order networks until future work. We don’t need them yet. We
can already show off something that’s easy to do with propagators but painful to do with
expressions.

One of the motivations for examining propagators in the first place is that multidirectional
constraints [51, 7, 52] are very easy to express in terms of unidirectional propagators. For
example, the constraint “a is the sum of b and c” can be used to deduce a from b and c (by
adding them) or b from a and c (by subtracting c from a) or c from a and b (by subtracting
b from a). That’s actually hard to express with an expression, but nothing could be easier
to write down with propagators:

(define (sum x y total)
(adder x y total)
(subtractor total x y)
(subtractor total y x))

This network fragment looks like Figure 3-3. It works because whichever propagator has
enough inputs will do its computation. It doesn’t buzz because the cells take care to not
get too excited about redundant discoveries. Products and many other constraints work
analogously.
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Figure 3-3: A constraint composed of mutual inverses

(define (product x y total)
(multiplier x y total)
(divider total x y)
(divider total y x))

(define (quadratic x x^2)
(squarer x x^2)
(sqrter x^2 x))

;;; ...

Having done that, we can readily upgrade our fahrenheit->celsius converter into a
constraint that can convert in either direction, dynamically choosing which to do based on
which temperature happens to be available at the time. The procedure and the network
diagram (Figure 3-4) are almost identical.

(define (fahrenheit-celsius f c)
(let ((thirty-two (make-cell))

(f-32 (make-cell))
(five (make-cell))
(c*9 (make-cell))
(nine (make-cell)))

((constant 32) thirty-two)
((constant 5) five)
((constant 9) nine)
(sum thirty-two f-32 f)
(product f-32 five c*9)
(product c nine c*9)))
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Figure 3-4: A multidirectional temperature converter. Now the + and × boxes each look
like Figure 3-3 inside, and can compute in whatever direction the available data permits.
That’s why they don’t have arrowheads on their connections.

And indeed, if we attach it to some cells and feed it, say, a Celsius temperature, it will
gleefully produce the corresponding Fahrenheit temperature for us.

(define f (make-cell))
(define c (make-cell))

(fahrenheit-celsius f c)

(add-content c 25)
(content f)
77

This does not yet constitute a full constraint solving system, because it will get confused
by circularities in the constraints (which amount to simultaneous equations). We will return
to that problem later (Section 5.3), but for now even this facility can already be useful if
it could integrate seamlessly with general programming, and it is already painful to try to
build directly in expression-land. Just think about what you would need to do: every time
you call it, it would need to check whether it got the Celsius or the Fahrenheit; it would need
to contain both the Fahrenheit to Celsius formula and the Celsius to Fahrenheit formula;5

and its caller would need to figure out whether they got the Celsius or the Fahrenheit as
the answer.

If you wanted to extend an expression-based Fahrenheit-Celsius converter to also handle
Kelvin, you’d be in an even bigger world of pain (for instance, there would now be six pos-
sible combinations of available input and desired output). But if you have the propagation
infrastructure available, the Kelvin fragment just hooks on as a separate piece (yielding a
combined network that looks like Figure 3-5):

5If you built the bidirectional temperature converter out of tri-directional arithmetic primitives, you would
not need to invert the formula completely—just reverse the order in which the arithmetic is tried. If you
didn’t even want to do that by hand, you would need to write a loop that tried all the arithmetic operations
to see which one could do its computation, and then you’d be quite close to propagator territory.
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Figure 3-5: A three-way temperature converter. This is an additive extension of the two-
way converter in Figure 3-4.

(define (celsius-kelvin c k)
(let ((many (make-cell)))

((constant 273.15) many)
(sum c many k)))

(define k (make-cell))

(celsius-kelvin c k)
(content k)
298.15

and even produces the right Kelvin temperature from an input that was already there before
it was attached!

Being able to propagate information in any order and direction is extremely powerful. It
is interesting and useful in some cases even with complete information, such as the presence
or absence of an incontrovertible number, but it really shines when combined with the
ability to merge partial information that comes in from multiple directions. Let’s see that
now.

3.3 We can propagate intervals too

When converting temperatures, we have already taken advantage of the big way the prop-
agation model of computation differs from the expression-evaluation model. The difference
is that a single cell can get information from multiple sources, whereas the return value of
an expression can come from only one source—the expression. That’s why the network can
convert from Celsius to Fahrenheit just as well from Fahrenheit to Celsius: all the interme-
diate cells are happy to receive values from either direction, and the propagators will move
it on whichever way they can.

More generally, however, if information can enter a cell from multiple different sources,
it is natural to imagine each source producing some part of the information in question,
and the cell being responsible for combining those parts. This is the key idea of partial
information that we are developing throughout this dissertation, which we are now seeing
in action for the first time.

Let us imagine a network whose cells contain subintervals of the real numbers, each
interval representing the set of possible values to which the cell’s content is known to be
restricted. The operations in the network perform interval arithmetic. In this case, if there
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is some redundancy in the network, a cell can get nontrivial constraining information from
multiple sources; since each source authoritatively asserts that the cell’s value must be
within its limits, the net effect is that the intervals need to be intersected. [13, 14]

To make this example concrete, consider the famous [9] problem of measuring the height
of a building by means of a barometer. A great variety of solutions [10] are known; one
method, attributed [37] to Neils Bohr, is to drop it off the roof and time its fall. Then the
height h of the building is given by h = 1

2gt
2, where g is the acceleration due to gravity

and t is the amount of time the barometer took to hit the ground. We implement this as a
propagator network (just for fun, it includes some uncertainty about the local g):

(define (fall-duration t h)
(let ((g (make-cell))

(one-half (make-cell))
(t^2 (make-cell))
(gt^2 (make-cell)))

((constant (make-interval 9.789 9.832)) g)
((constant (make-interval 1/2 1/2)) one-half)
(quadratic t t^2)
(product g t^2 gt^2)
(product one-half gt^2 h)))

Trying it out, we get an estimate for the height of the building:

(define fall-time (make-cell))
(define building-height (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time (make-interval 2.9 3.1))
(content building-height)
#(interval 41.163 47.243)

This has the same form as the temperature conversion; the interesting difference is that we
are propagating intervals instead of numbers.

We can also measure the height of a building using a barometer by standing the barometer
on the ground on a sunny day, measuring the height of the barometer as well as the length
of its shadow, and then measuring the length of the building’s shadow and using similar
triangles. The formula is h = shba

sba
, where h and s are the height and shadow-length of the

building, respectively, and hba and sba are the barometer’s. The network for this is

(define (similar-triangles s-ba h-ba s h)
(let ((ratio (make-cell)))

(product s-ba ratio h-ba)
(product s ratio h)))

and we can try it out:
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[41.163, 47.243]

[44.514, 48.978]
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Figure 3-6: Partial answers from different sources merge at a cell. The merged result
incorporates all the information available in both partial results.

(define barometer-height (make-cell))
(define barometer-shadow (make-cell))
(define building-height (make-cell))
(define building-shadow (make-cell))
(similar-triangles barometer-shadow barometer-height

building-shadow building-height)

(add-content building-shadow (make-interval 54.9 55.1))
(add-content barometer-height (make-interval 0.3 0.32))
(add-content barometer-shadow (make-interval 0.36 0.37))
(content building-height)
#(interval 44.514 48.978)

Different measurements lead to different errors, and the computation leads to a different
estimate of the height of the same building. This gets interesting when we combine both
means of measurement, as in Figure 3-6, by measuring shadows first and then climbing the
building and dropping the barometer off it:

(define fall-time (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time (make-interval 2.9 3.1))
(content building-height)
#(interval 44.514 47.243)

It turns out that in this case the upper bound for the building’s height comes from the drop
measurement, whereas the lower bound comes from the shadow measurement—we have a
nontrivial combination of partial information from different sources.

Because the two experiments are completely independent, this much can be simulated
perfectly well in an expression language with an explicit merging step like

(intersect-intervals
(similar-triangles ...)
(fall-time ...))

Putting the merge into the cell itself is perhaps a bit more elegant. It also naturally leads

37



to a more incremental computation—if measuring shadows could take a long time (waiting
for a break in the clouds?) a client needing the height of the building can start work with a
partial result from the other method, and perhaps refine it when the shadow measurement
finally becomes available. This is something of a gain over what we can do with expressions,
but not yet very much.

The real advantage of letting the cells merge information is that it lets us build systems
with a much broader range of possible information flows. In fact, we snuck that into this
example already. Since we built our barometer networks out of constraints, the refined
information available about the height of the building propagates backward, and lets us
infer refinements of some of our initial measurements!

(content barometer-height)
#(interval .3 .31839)
;; Refining the (make-interval 0.3 0.32) we put in originally

(content fall-time)
#(interval 3.0091 3.1)
;; Refining (make-interval 2.9 3.1)

*** TODO (Optional): Convert to the “barometer, ruler, and stopwatch” prob-
lem? *** Indeed, if we offer a barometer (presumably different from the one we dropped off
the roof) to the building’s superintendent in return for perfect information about the build-
ing’s height, we can use it to refine our understanding of barometers and our experiments
even further:

(add-content building-height (make-interval 45 45))
(content barometer-height)
#(interval .3 .30328)

(content barometer-shadow)
#(interval .366 .37)

(content building-shadow)
#(interval 54.9 55.1)

(content fall-time)
#(interval 3.0255 3.0322)

Here we have just seen multiple ways of solving the same problem augment and reinforce
each other; and even better, the results of the various methods tell us more about each
other’s inputs. This is a toy example, of course, but this general sort of thing happens all
the time in science, and in human thought generally, but takes a great deal of effort to
arrange on conventional computers.

This example already shows the power of propagating mergeable information, so we
should go ahead and look at the infrastructure that runs it; but we’ll start seeing what it
can really do after Section 3.4, in which we show a general system that can handle numbers,
intervals, and lots of other interesting things.

Making this work
Unfortunately, the code we had in Section 3.1 doesn’t run this barometer example out of
the box. The first reason is that those propagators don’t operate on intervals. Therefore,
we need some code, Figure 3-7, to actually do interval arithmetic, and we need to make
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(define (mul-interval x y)
(make-interval (* (interval-low x) (interval-low y))

(* (interval-high x) (interval-high y))))

(define (div-interval x y)
(mul-interval x (make-interval (/ 1.0 (interval-high y))

(/ 1.0 (interval-low y)))))

(define (square-interval x)
(make-interval (square (interval-low x))

(square (interval-high x))))

(define (sqrt-interval x)
(make-interval (sqrt (interval-low x))

(sqrt (interval-high x))))

(define (empty-interval? x)
(> (interval-low x) (interval-high x)))

(define (intersect-intervals x y)
(make-interval
(max (interval-low x) (interval-low y))
(min (interval-high x) (interval-high y))))

Figure 3-7: Deadly boring code for interval arithmetic.6 Nothing fancy here, especially
since we are assuming that all our intervals have positive bounds (and only implementing
multiplication, because the examples don’t add intervals).

some propagators that expect intervals in input cells and write intervals to output cells.
We can just reuse function->propagator-constructor, but wrap the interval arithmetic
rather than the normal number arithmetic:

(define multiplier (function->propagator-constructor (handling-nothings mul-interval)))
(define divider (function->propagator-constructor (handling-nothings div-interval)))
(define squarer (function->propagator-constructor (handling-nothings square-interval)))
(define sqrter (function->propagator-constructor (handling-nothings sqrt-interval)))

The second reason is that the cells from Section 3.1 signal an error whenever any prop-
agator adds anything to a nonempty cell that is not equal to what’s already there. So to
make this example work, we need to alter our cells to accept intervals, and merge them by
intersection rather than checking that they are equal.

6For the concrete definitions of the data structures we use in this text, see Appendix A.4.
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(define (make-cell)
(let ((neighbors ’()) (content nothing))

(define (add-content increment)
(cond ((nothing? increment) ’ok)

((nothing? content)
(set! content increment)
(alert-propagators neighbors))
(else ; **
(let ((new-range

(intersect-intervals content
increment)))

(cond ((equal? new-range content) ’ok)
((empty-interval? new-range)
(error "Ack! Inconsistency!"))
(else (set! content new-range)

(alert-propagators neighbors)))))))
;; ... the definitions of new-neighbor! and me are unchanged

))

This interesting, interval-specific merge code is what allowed our example network to
accept measurements from diverse sources and combine them all to produce a final result
that was more precise than the result from any one measurement alone.

Sadly, this version won’t run the example from Section 3.1 as written, because now it
doesn’t handle straight numbers anymore—intervals are again a particular, special-purpose
partial information structure, with different behavior from the one we used to convert
temperatures. But notice how similar the code is, and how little we had to change to move
from one to the other. The scheduler, in particular, is untouched. This is a hint that the
partial information principle is the right thing. Now, when we generalize to working with
numbers and intervals in Section 3.4, we will find that we have a system of immense power
and flexibility. This is the base on which we will fulfil the promises made in Chapter 1.

3.4 Generic operations let us propagate anything!

In Section 3.1 we propagated numbers, and we saw this was good. In Section 3.3 we
propagated intervals, and we saw this was good. But the numbers were separated from
the intervals, and we could not propagate the one through the same networks as the other.
Let us now merge the two designs, and generalize them, and forge one infrastructure to
propagate them all.

Whenever one needs to do the same thing to different kinds of data, generic operations7

*** TODO (Optional): citations? *** come to mind. There are two places where we
had to make changes to move from accommodating numbers to accommodating intervals.
We had to change the cell’s behavior on receiving new information, and we had to redefine
the “primitive” arithmetic. We can make the two kinds of networks interoperate with each
other (and with many interesting future kinds we will introduce later) by transforming those
places into published generic operations, and allowing them to be extended as needed.

First cells
The code we had to vary was what to do when new information is added to the cell.
Numbers we compared by equality, signaling errors when they differed. Intervals we merged

7Or polymorphism, ad-hoc if you like, or overriding, or virtual method dispatch. . . . I don’t know much
about roses, but an idea by any other name works as well.
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by intersection, signaling errors when the intersection was empty. What do these things
have in common that can become the contract of a generic procedure?

The commonality is that both are viewed as information about what’s in the cell. A
number is complete information: “The content of this cell is 5 and that’s final.” An interval
is partial: “The content of this cell is between 4 and 6, but I don’t know anything else.”
In both cases, errors arise when an incoming statement cannot be reconciled with what
the cell already knows. For instance, if the intersection of two intervals is empty, then
they represent mutually contradictory information, so a cell exposed to this is justified in
signaling an error.

This story is amenable to being factored into a generic function, merge, whose methods
depend upon the kind of partial information being tendered. merge takes over the job of
merging the information available to a cell, but we leave the cell itself responsible for alerting
its neighbors when things change or when contradictions arise, because that behavior is the
same in all cases. The new cell looks like this:

(define (make-cell)
(let ((neighbors ’()) (content nothing))

(define (add-content increment) ; ***
(let ((answer (merge content increment)))

(cond ((eq? answer content) ’ok)
((contradictory? answer)
(error "Ack! Inconsistency!"))
(else (set! content answer)

(alert-propagators neighbors)))))
;; ... new-neighbor! and me are still the same

))

The contract of the generic function merge is that it takes two arguments, the currently
known information and the new information being supplied, and returns the new aggregate
information. If the information being supplied is redundant, the merge function should
return exactly (by eq?) the original information, so that the cell can know that the news
was redundant and not alert its neighbors. If the new information contradicts the old
information, merge should return a distinguished value indicating the contradiction, so that
the cell can signal an error. For symmetry and future use, if the new information strictly
supersedes the old (i.e., if the old information would be redundant given the new, but the
new is not redundant given the old) merge is expected to return exactly (by eq?) the new
information.8

Let us now construct a generic merge that obeys this contract for numbers and intervals,
and which we will later extend to other partial information types. The particular generic
operations facility I am using is incidental. I will describe it enough to make further inline
code legible (if you are really interested in the gory details, see Appendix A.1), but the
interesting thing is what the particular methods are, and the fact that we can attach them
independently of each other.

To create a new generic procedure, we use use make-generic-operator; for this we supply
it the procedure’s arity, name, and default operation. The default operation will be called
if no methods are applicable. For merge, we can let the default operation assume that both
the content and the increment are complete information. In this case, they are consistent

8Merge is not entirely symmetric: if the first and second arguments represent equivalent information but are
not eq?, merge must return the first rather than the second. This is a consequence of the asymmetry in the
cells’ treatment of their existing content versus incoming content. Having merge return the wrong one could
lead to spurious infinite loops.
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only if they are equal, and if they are not, we should produce a contradiction.

(define merge
(make-generic-operator 2 ’merge
(lambda (content increment)

(if (default-equal? content increment)
content
the-contradiction))))

We will make the detection of contradictions a generic operation as well, so we can extend
it later, but for now it need only check for the sentinel contradiction value.

(define the-contradiction #(*the-contradiction*))

(define contradictory?
(make-generic-operator 1 ’contradictory?
(lambda (thing) (eq? thing the-contradiction))))

To add methods to generic procedures we use defhandler. The procedure defhandler
takes a generic procedure (or its name), a method, and a list of predicates, and extends the
generic procedure to invoke the given method if the supplied arguments are all accepted
by their respective predicates. This is a predicate dispatch system [20]. *** TODO
(Optional): This system has no notion of predicate specificity; if more than one
method is applicable, one will be applied arbitrarily, so we take care that such
ambiguitites cause no trouble. ***

It turns out that our sentinel value for “no content” fits very nicely into the generic
partial information scheme, as a piece of information that says “I know absolutely nothing
about the content of this cell”. The merge methods for handling nothing are

(defhandler merge
(lambda (content increment) content)
any? nothing?)

(defhandler merge
(lambda (content increment) increment)
nothing? any?)

Together with the default operation on merge, these methods replicate the behavior of our
first cell (from Section 3.1).

To be able to store intervals in the cells of a network, we need only add a method that
describes how to combine them with each other:

(defhandler merge
(lambda (content increment)

(let ((new-range (intersect-intervals content increment)))
(cond ((interval-equal? new-range content) content)

((interval-equal? new-range increment) increment)
((empty-interval? new-range) the-contradiction)
(else new-range))))

interval? interval?)

Interpreting raw numbers as intervals allows us to build a network that can handle both
intervals and numbers smoothly.
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(define (ensure-inside interval number)
(if (<= (interval-low interval) number (interval-high interval))

number
the-contradiction))

(defhandler merge
(lambda (content increment)

(ensure-inside increment content))
number? interval?)

(defhandler merge
(lambda (content increment)

(ensure-inside content increment))
interval? number?)

Already, in a small way, we see the general-purpose propagation infrastructure beginning
to let different subsystems (numbers and intervals, in this case) interoperate in the same
network. After we finish building it, we will expand this much further: with a detailed
disquisition on the tracking and uses of dependencies in Chapter 4, and a sweeping overview
of all manner of ways to propagate in Chapter 5.

Then propagators
Now we want to upgrade our propagators to handle both numbers and intervals. Recall
how in Section 3.1 we made a propagator that could handle numbers (and nothings) with

(define multiplier (function->propagator-constructor (handling-nothings *)))

and how in Section 3.3 we made a propagator that could handle intervals (and nothings)
with

(define multiplier (function->propagator-constructor (handling-nothings mul-interval)))

To generalize this, let us make propagators out of generic operations instead of the specific
functions * and mul-interval. First, we have to define said generic operations:

(define generic-+ (make-generic-operator 2 ’+ +))
(define generic-- (make-generic-operator 2 ’- -))
(define generic-* (make-generic-operator 2 ’* *))
(define generic-/ (make-generic-operator 2 ’/ /))
(define generic-square (make-generic-operator 1 ’square square))
(define generic-sqrt (make-generic-operator 1 ’sqrt sqrt))
;;; ... for more generic primitives see Appendix A.5.1

Then we make propagators out of them:

(define adder (function->propagator-constructor (nary-unpacking generic-+)))
(define subtractor (function->propagator-constructor (nary-unpacking generic--)))
(define multiplier (function->propagator-constructor (nary-unpacking generic-*)))
(define divider (function->propagator-constructor (nary-unpacking generic-/)))
(define squarer (function->propagator-constructor (nary-unpacking generic-square)))
(define sqrter (function->propagator-constructor (nary-unpacking generic-sqrt)))
;;; ... remainder and details in Appendix A.5.1

We wrap the generic operations in a common wrapper to have a common mechanism to han-
dle all sufficiently uniform types of partial information. Nary-unpacking is a more general
and extensible version of handling-nothings; and nothing is one of the partial informa-
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tion types we will handle uniformly (across all primitive operations) with nary-unpacking.
The details, along with discussions of the relative merits of available approaches, are in
Appendix A.5.1.

Finally, to let our propagators handle intervals as well as numbers, we need to attach
interval arithmetic methods to the generic operations.9

(defhandler generic-* mul-interval interval? interval?)
(defhandler generic-/ div-interval interval? interval?)
(defhandler generic-square square-interval interval?)
(defhandler generic-sqrt sqrt-interval interval?)
;;; ... for the other interval methods, see Appendix A.5.2

Now that we’ve done all that work, it’s almost time to reap the benefits. First we should
verify that nothing broke—indeed, our interval arithmetic still works

(define fall-time (make-cell))
(define building-height (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time (make-interval 2.9 3.1))
(content building-height)
#(interval 41.163 47.243)

and now it interoperates with raw numbers appearing in the network,

(add-content building-height 45)

(content fall-time)
#(interval 3.0255 3.0322)

which get smoothly interpreted as intervals with equal upper and lower bounds where
appropriate.

This is the culmination of the effort we set for ourselves in this chapter. We started with a
structurally sound but limited propagation system for complete information in Section 3.1,
and started benefiting from its multidirectionality already in Section 3.2. We verified its
structural soundness by modifying it to operate on intervals, a specific kind of incomplete
information, in Section 3.3. Now, seeing where and how the system had to be modified, we
united numbers and intervals as methods of common generic procedures, so our machine
works equally well with both, even at once.

The real advantage of doing this is that we’ve built a general infrastructure that can
propagate and merge any style of partial information we care to teach it about. The plan for
the rest of the dissertation is to spend Chapter 4 carefully working out a partial information
structure that implements and uses dependency tracking and belief maintenance; then in
Chapter 5, show that by appropriate choices of partial information we will be able to recover
the advantages of constraint satisfaction, functional reactivity, dataflow programming and
others in a single unified framework; then with some additional infrastructural labor in
Chapter 6 we will also be able to recover regular programming; and we will end with
a system that supersedes evaluation, and gains the expressive power that we have been
reaching for.

9Besides methods implementing interval arithmetic, we also need methods that will promote numbers to
intervals when needed. The details are in Appendix A.5.2.
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Chapter 4

Dependencies

All humans harbor mutually inconsistent beliefs: an intelligent person may be committed to
the scientific method yet have a strong attachment to some superstitious or ritual practices.
A person may have a strong belief in the sanctity of all human life, yet also believe that cap-
ital punishment is sometimes justified. If we were really logicians this kind of inconsistency
would be fatal, because were we to simultaneously believe both propositions P and NOT P
then we would have to believe all propositions! Somehow we manage to keep inconsistent
beliefs from inhibiting all useful thought. Our personal belief systems appear to be locally
consistent, in that there are no contradictions apparent. If we observe inconsistencies we
do not crash—we chuckle!

Dependency decorations on data that record the justifications for the data give us a
powerful tool for organizing computations. Every piece of data (or procedure) came from
somewhere. Either it entered the computation as a premise that can be labeled with its
external provenance, or it was created by combining other data. We can add methods to
our primitive operations which, when processing or combining data that is decorated with
justifications, can decorate the results with appropriate justifications. For example, the
simplest kind of justification is just a set of those premises that contributed to the new
data. A procedure such as addition can decorate a sum with a justification that is just the
union of the premises of the justifications of the addends that were supplied. Such simple
justifications can be carried without more than a constant factor overhead in space, but they
can be invaluable in the attribution of credit or blame for outcomes of computations—in
knowing what assumptions matter for a particular consequence.

By decorating data with dependencies a system can manage and usefully compute with
multiple, possibly inconsistent world views. A world view is a subset of the data that is
supported by a given set of explicit assumptions. Each computational process may restrict
itself to working with some consistent world view. Dependencies allow a system to sepa-
rate the potentially contradictory consequences of different assumptions, and make useful
progress by exercising controlled incredulity.

If a contradiction is discovered, a process can determine the particular nogood set of
inconsistent premises. The system can then “chuckle”, realizing that no computations
supported by any superset of those premises can be believed; computations can proceed in
worldviews that do not include the nogood set. This chuckling process, Dependency-Directed
Backtracking , [50, 31, 58], can be used to optimize a complex search process, allowing a
search to make the best use of its mistakes. But enabling a process to simultaneously hold
beliefs based on mutually inconsistent sets of premises, without logical disaster, is itself
revolutionary.

Now that we have established a general mechanism for computing with various forms
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of partial information in Chapter 3, we are ready to consider dependency tracking as a
particularly consequential form. As discussed above, dependency tracking is extremely
useful in its own right, for provenance information, worldview separation, and search. We
will also find in Chapter 5 that similar techniques will help us implement systems that may
at first appear to require custom propagation mechanisms.

Dependency tracking is difficult to do and use well in evaluation-based systems, because
the linear flow of time imposes spurious dependencies: everything that comes after any point
in time seems to depend on everything that went before. But as we shall see in the rest of
this chapter, in a propagation setting, dependency tracking is both natural and effective.

We will spend this chapter evolving a system that tracks and uses dependencies. We will
start with simply tracking the dependencies of a single value in Section 4.1, and find that
we can use the dependency information for end-to-end checks of what inputs actually mat-
tered for a particular result. Then, in Section 4.2, we will implement separable worldviews
by using Truth Maintenance Systems, [16, 35, 23], to store multiple values with different
justifications. We will extend our truth maintenance machinery to detect and report the
causes of contradictions in Section 4.3, and use it to automatically search through a space
of hypothetical premises in Section 4.4. This last is a general-purpose implementation of
implicit dependency-directed backtracking [57].

Observe that as we evolve our dependency tracking system below, we need make no
changes to any of the code already presented, whether to cells, basic propagators, or the
scheduler.1 All our changes are just new partial information structures. The core propaga-
tion system is as modular and flexible as promised in the beginning. As a case in point, when
the system needs to change its worldview, as may happen in search, it can do so directly
through a partial information structure—no provision for this is necessary in the toplevel
controller of the propagation system. This stands in stark contrast to traditional constraint
satisfaction, where search is an additional, special-purpose external control loop command-
ing the propagation proper. We will discuss constraint satisfaction as a specialization of
general-purpose propagation in Section 5.3.

4.1 Dependencies track Provenance

We start with a relatively simple system that only tracks and reports the provenance of
its data. How do we want our provenance system to work? We can make cells and define
networks as usual, but if we add supported values as inputs, we want to get supported
values as outputs. For example, we can label the measurements in our shadow measuring
experiment with the metadata that they are from the shadow measuring experiment. We
make up a premise named shadows to stand for that experiment, and say that the inputs
are justified by that premise:

(define barometer-height (make-cell))
(define barometer-shadow (make-cell))
(define building-height (make-cell))
(define building-shadow (make-cell))
(similar-triangles barometer-shadow barometer-height

building-shadow building-height)

1Except, of course, for adding methods to published generic procedures, but that was the point.
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(add-content building-shadow
(supported (make-interval 54.9 55.1) ’(shadows)))
(add-content barometer-height
(supported (make-interval 0.3 0.32) ’(shadows)))
(add-content barometer-shadow
(supported (make-interval 0.36 0.37) ’(shadows)))
(content building-height)
#(supported #(interval 44.514 48.978) (shadows))

Indeed, our resulting estimate for the height of the building now depends on our shadows
premise, which tracks the consequences of our measurements of the barometer and the
shadow through the similar-triangles computation. We can try dropping the barometer
off the roof, but if we do a bad job of timing its fall, our estimate won’t improve.

(define fall-time (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time
(supported (make-interval 2.9 3.3) ’(lousy-fall-time)))
(content building-height)
#(supported #(interval 44.514 48.978) (shadows))

What’s more, the dependency tracker tells us that it was a lousy timing job: the es-
timate computed through fall-duration and supported by lousy-fall-time gave the
building-height cell no information it didn’t already know from shadows, so that cell just
kept its previous answer, with its previous dependencies. If we time the fall better, then we
can get a finer estimate, which then will depend on the improved fall timing measurement.

(add-content fall-time
(supported (make-interval 2.9 3.1) ’(better-fall-time)))
(content building-height)
#(supported #(interval 44.514 47.243)

(better-fall-time shadows))

This answer still depends on shadows because better-fall-time didn’t completely replace
it—the lower bound on the height is still determined by the shadows experiment. If we then
give a barometer to the superintendent, we can watch the superintendent’s information
supersede and obsolesce the results of our measurements

(add-content building-height (supported 45 ’(superintendent)))
(content building-height)
#(supported 45 (superintendent))

Now that the super has given us precise data on the height of the building, the multidirec-
tionality of the network lets us infer more about our original measurements, just as it did
in Section 3.3. But now, the dependency tracker explicitly tells us which measurements are
improved, and on what grounds:
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(content barometer-height)
#(supported #(interval .3 .30328)

(superintendent better-fall-time shadows))

(content barometer-shadow)
#(supported #(interval .366 .37)

(better-fall-time superintendent shadows))

(content building-shadow)
#(supported #(interval 54.9 55.1) (shadows))

(content fall-time)
#(supported #(interval 3.0255 3.0322)

(shadows superintendent))

In this case, the original building-shadow measurement was better than what we could infer
about the shadow from the superintendent’s extra data, but all our other measurements
proved improvable.

I snuck something subtle into this example. We had arranged for the network to treat
numbers and intervals as compatible forms of partial information in Section 3.4. Now we
expect it to track the dependencies of both without flinching. Beyond combination, this is
composition: the justification tracking is a partial information type that expects to operate
on another partial information type, in this case the number or interval whose justification
is being tracked. We will see shortly that this is accomplished by a recursive call to the
merge function that defines the partial information abstraction.

Here values in cells can depend upon sets of premises. In this example each cell is
allowed to hold one value, and the merge procedure combines the possible values for a
cell into one most-informative value that can be derived from the values tendered. This
value is supported by the union of the supports of those values that contributed to the
most informative value. The value is accumulated by combining the current value (and
justifications) with the new value being proposed, one at at time.

This particular approach to accumulating supports is imperfect, and can produce spurious
dependencies. We can illustrate this with interval arithmetic by imagining three values
A,B,C being proposed in order. A possible computation is shown in Figure 4-1. We see

A: [ ]
B: [ ]
-----------------------
A,B: [ ]
C: [ ]
-----------------------
A,B,C: [ ]

Figure 4-1: The overlap anomaly

that premise A is included in the justifications for the result, even though it is actually
irrelevant, because it is superseded by the value supported by C. This case actually occurs
in the code example above—the dependency of barometer-height on better-fall-time is
spurious, but retained for this reason. The deep reason why this happens is that an interval
is really a compound of the upper and lower bounds, and it is profitable to track those
dependencies separately; we will study that question, in its general form, in Section 6.3.
This anomaly will also become less severe as a consequence of the worldview support we
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will add in Section 4.2.

Making this work
What do we need to do to make this dependency tracking work? We need to store the
justification of each datum alongside that datum; we need to track the justifications properly
through merging the data; and we also need to track the justifications properly through
computing with the data. Storing is easy: we define a container data structure to store a
value together with the dependencies that support it (called a v&s for value&support; see
Appendix A.4).

(define (v&s-merge v&s1 v&s2)
(let* ((v&s1-value (v&s-value v&s1))

(v&s2-value (v&s-value v&s2))
(value-merge (merge v&s1-value v&s2-value)))

(cond ((eq? value-merge v&s1-value)
(if (implies? v&s2-value value-merge)

;; Confirmation of existing information
(if (more-informative-support? v&s2 v&s1)

v&s2
v&s1)

;; New information is not interesting
v&s1))

((eq? value-merge v&s2-value)
;; New information overrides old information
v&s2)

(else
;; Interesting merge, need both provenances
(supported value-merge

(merge-supports v&s1 v&s2))))))

(defhandler merge v&s-merge v&s? v&s?)

(define (implies? v1 v2)
(eq? v1 (merge v1 v2)))

Figure 4-2: Merging supported values

*** TODO (Optional): Perhaps relate this to the Suppes or Gentzen systems
of logic in a footnote? On the grounds that they all explicitly keep track of
the implications? *** The important thing is to describe how to merge the information
contained in two such data structures; see Figure 4-2. The value contained in the answer
must of course be the merge of the values contained in the two inputs, but sometimes we
may get away with using only some of the supporting premises. There are three cases:
if neither the new nor the old values are redundant, then we need both their supports; if
either is strictly redundant, we needn’t include its support; and if they are equivalent, we
can choose which support to use. In this case, we use the support of the value already
present unless the support of the new one is strictly more informative (i.e., is a strict subset
of the same premises).

Here, for the first time, we are using the partial information abstraction for composition
(as we kept saying we would). Our dependencies don’t necessarily have to justify complete
values—they can justify any information we want, possibly partial. Merging v&ss recursively
merges their contents with the same generic merge, and uses the results to decide what to
do with the justifications.
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If it so happens that two supported values contradict each other, we want to return an
object that will be recognized as representing a contradiction, but will retain the information
about which premises were involved in the contradiction. It is convenient to do that by using
the cell’s generic contradiction test; that way we can let v&s-merge return a supported value
whose value is a contradiction, and whose support can carry information about why the
contradiction arose.

(defhandler contradictory?
(lambda (v&s) (contradictory? (v&s-value v&s)))
v&s?)

This is also composition: mergeing two data can produce a contradiction object, with is
also an information state. So we can store it in a v&s, and it becomes a contradiction whose
reasons we know something about.

Finally, we need to upgrade our arithmetic primitives to carry dependencies around, and
to interoperate with data they find that lacks justifications by inserting empty dependency
sets; see Appendix A.5.3. Now supporting individual values works, and we are ready to
elaborate the dependency idea into supporting alternate worldviews.

4.2 Dependencies support Alternate Worldviews

How can we make a machine that believes several different things at the same time? How
can we teach it to reason about the consequences of one assumption or another separately,
without getting mixed up about which conclusion is due to which source?

We allow a cell to hold more than one datum at a time, each justified by its own jus-
tification. When queried, a cell can do whatever deduction is required to give the most
informative answer it can, justified by the weakest sufficient set of premises. Allowing mul-
tiple values provides further advantages. It becomes possible to efficiently support multiple
alternate worldviews: a query to a cell may be restricted to return only values that are
supported by a subset of the set of possible premises. Such a subset is called a worldview .
A truth maintenance system (TMS) can be used to store multiple values with different jus-
tifications for this purpose. If we put TMSes in our cells, we can revisit the building-height
problem:

(define barometer-height (make-cell))
(define barometer-shadow (make-cell))
(define building-height (make-cell))
(define building-shadow (make-cell))
(similar-triangles barometer-shadow barometer-height

building-shadow building-height)

(add-content building-shadow
(make-tms (supported (make-interval 54.9 55.1) ’(shadows))))
(add-content barometer-height
(make-tms (supported (make-interval 0.3 0.32) ’(shadows))))
(add-content barometer-shadow
(make-tms (supported (make-interval 0.36 0.37) ’(shadows))))
(content building-height)
#(tms (#(supported #(interval 44.514 48.978) (shadows))))

Nothing much changes while there is only one source of information,
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(define fall-time (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time
(make-tms (supported (make-interval 2.9 3.1) ’(fall-time))))
(content building-height)
#(tms (#(supported #(interval 44.514 47.243)

(shadows fall-time))
#(supported #(interval 44.514 48.978)

(shadows))))

but when we add the second experiment, the TMS remembers the deductions made in the
first. In this particular system, we chose to make the worldview implicit and global, and
to have it include all premises by default. That works fine on a uniprocessor, but a more
distributed propagator network might be better served by a more local notion of worldview,
and by propagating changes thereto explicitly rather than letting them instantly affect the
entire network.2

With an implicit global worldview, querying a TMS requires no additional input and
produces the most informative value supported by premises in the current worldview:

(tms-query (content building-height))
#(supported #(interval 44.514 47.243) (shadows fall-time))

We also provide a means to remove premises from the current worldview, which in this case
causes the TMS query to fall back to the less-informative inference that can be made using
only the shadows experiment:

(kick-out! ’fall-time)
(tms-query (content building-height))
#(supported #(interval 44.514 48.978) (shadows))

Likewise, we can ask the system for the best answer it can give if we trust the fall-time
experiment but not the shadows experiment,

(bring-in! ’fall-time)
(kick-out! ’shadows)
(tms-query (content building-height))
#(supported #(interval 41.163 47.243) (fall-time))

which may involve some additional computation not needed heretofore, whose results are
reflected in the full TMS we can observe at the end.

(content building-height)
#(tms (#(supported #(interval 41.163 47.243)

(fall-time))
#(supported #(interval 44.514 47.243)

(shadows fall-time))
#(supported #(interval 44.514 48.978)

(shadows))))

Now, if we give the superintendent a barometer, we can add her input to the totality of our
knowledge about this building

2It would probably be a good idea for waves of worldview changes to travel through the network “faster”
than other changes, to minimize work spent on computing in worldviews that are no longer interesting.
Section 6.4 discusses possibilities for a coherent and general mechanism that could be used to achieve this.
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(add-content building-height (supported 45 ’(superintendent)))

and observe that it is stored faithfully along with all the rest,

(content building-height)
#(tms (#(supported 45 (superintendent))

#(supported #(interval 41.163 47.243)
(fall-time))

#(supported #(interval 44.514 47.243)
(shadows fall-time))

#(supported #(interval 44.514 48.978)
(shadows))))

though indeed if we trust it, it provides the best estimate we have:

(tms-query (content building-height))
#(supported 45 (superintendent))

(and restoring our faith in the shadows experiment has no effect on the accuracy of this
answer).

(bring-in! ’shadows)
(tms-query (content building-height))
#(supported 45 (superintendent))

If we now turn our attention to the height of the barometers we have been dropping and
giving away, we notice that as before, in addition to the originally supplied measurements,
the system has made a variety of deductions about it, based on reasoning backwards from
our estimates of the height of the building and the other measurements in the shadows
experiment.

(content barometer-height)
#(tms (#(supported #(interval .3 .30328)

(fall-time superintendent shadows))
#(supported #(interval .29401 .30328)

(superintendent shadows))
#(supported #(interval .3 .31839)

(fall-time shadows))
#(supported #(interval .3 .32) (shadows))))

If we should ask for the best estimate of the height of the barometer, we observe the same
problem we noticed in the previous section, namely that the system produces a spurious
dependency on the fall-time experiment, whose findings are actually redundant for an-
swering this question.

(tms-query (content barometer-height))
#(supported #(interval .3 .30328)

(fall-time superintendent shadows))

We can verify the irrelevance of the fall-time measurements by disbelieving them and
observing that the answer remains the same, but with more accurate dependencies.

(kick-out! ’fall-time)
(tms-query (content barometer-height))
#(supported #(interval .3 .30328) (superintendent shadows))
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What is more, having been asked to make that deduction, the truth maintenance system
remembers it, and produces the better answer thereafter, even if we subsequently restore
our faith in the fall-time experiment,

(bring-in! ’fall-time)
(tms-query (content barometer-height))
#(supported #(interval .3 .30328) (superintendent shadows))

and takes the opportunity to dispose of prior deductions that are obsoleted by this new
realization.

(content barometer-height)
#(tms (#(supported #(interval .3 .30328)

(superintendent shadows))
#(supported #(interval .3 .31839)

(fall-time shadows))
#(supported #(interval .3 .32) (shadows))))

Making this work
The first component of making this work is to define a suitable TMS to put into cells. In
Appendix A.4 we define a tms record structure that contains a list of v&s records.

A TMS is a set of v&ss. These v&ss represent the direct deductions the surrounding
system has added to the TMS, and any consequences thereof the TMS has deduced on its
own. Asking the TMS to deduce all the consequences of all its facts all the time is perhaps
a bad idea, so when we merge TMSes we assimilate the facts from the incoming one into
the current one, and then deduce only those consequences that are relevant to the current
worldview.

(define (tms-merge tms1 tms2)
(let ((candidate (tms-assimilate tms1 tms2)))

(let ((consequence (strongest-consequence candidate)))
(tms-assimilate candidate consequence))))

(defhandler merge tms-merge tms? tms?)

The procedure tms-assimilate incorporates all the given items, one by one, into the
given TMS with no deduction of consequences.

(define (tms-assimilate tms stuff)
(cond ((nothing? stuff) tms)

((v&s? stuff) (tms-assimilate-one tms stuff))
((tms? stuff)
(fold-left tms-assimilate-one

tms
(tms-values stuff)))

(else (error "This should never happen"))))

When we add a new v&s to an existing TMS we check whether the information contained
in the new v&s is deducible from that in one already in the TMS. If so, we can just throw
the new one away. Conversely, if the information in any existing v&s is deducible from the
information in the new one, we can throw those existing ones away. The predicate subsumes?
returns true only if the information contained in the second argument is deducible from that
contained in the first.
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(define (subsumes? v&s1 v&s2)
(and (implies? (v&s-value v&s1) (v&s-value v&s2))

(lset<= eq? (v&s-support v&s1) (v&s-support v&s2))))

(define (tms-assimilate-one tms v&s)
(if (any (lambda (old-v&s) (subsumes? old-v&s v&s))

(tms-values tms))
tms
(let ((subsumed

(filter (lambda (old-v&s) (subsumes? v&s old-v&s))
(tms-values tms))))

(make-tms
(lset-adjoin eq?

(lset-difference eq? (tms-values tms) subsumed)
v&s)))))

The procedure strongest-consequence finds the most informative consequence of the
current worldview. It does this by using merge to combine all of the currently believed facts
in the TMS.

(define (strongest-consequence tms)
(let ((relevant-v&ss

(filter all-premises-in? (tms-values tms))))
(fold-left merge nothing relevant-v&ss)))

(define (all-premises-in? thing)
(if (v&s? thing)

(all-premises-in? (v&s-support thing))
(every premise-in? thing)))

To interpret a given TMS in the current worldview is not quite as simple as just call-
ing strongest-consequence, because if the consequence has not been deduced previously,
which can happen if the worldview changed after the last time tms-merge was called, the
consequence should be fed back into the TMS.

(define (tms-query tms)
(let ((answer (strongest-consequence tms)))

(let ((better-tms (tms-assimilate tms answer)))
(if (not (eq? tms better-tms))

(set-tms-values! tms (tms-values better-tms)))
answer)))

To support the implicit global worldview, we need a mechanism to distinguish premises
that are believed in the current worldview from premises that are not. Premises may be
marked with “sticky notes”; Appendix A.4 shows how this is arranged.

Manually changing these sticky notes violates the network’s monotonicity assumptions,
so all propagators whose inputs might change under them need to be alerted when this
happens. Altering all the propagators indiscriminately is a conservative approximation
that works reasonably for a single process simulation.

(define (kick-out! premise)
(if (premise-in? premise) (alert-all-propagators!))
(mark-premise-out! premise))

(define (bring-in! premise)
(if (not (premise-in? premise)) (alert-all-propagators!))
(mark-premise-in! premise))
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In order to let cells containing TMSes interoperate with cells containing other kinds of
partial information that can be viewed as TMSes, we also augment our generic arithmetic
operations. The interested reader can find the details in Appendix A.5.4.

4.3 Dependencies explain Contradictions

We have been fortunate so far in having all our measurements agree with each other, so
that all worldviews we could possibly hold were, in fact, internally consistent. But what
if we had mutually contradictory data? What if, for instance, we happened to observe the
barometer’s readings, both while measuring its shadow on the ground and before dropping
it off the roof of the building? We might then consult some pressure-altitude tables, or
possibly even an appropriate formula relating altitude and pressure, and, being blessed with
operating on a calm, windless day, deduce, by computations whose actual implementation
as a propagator network would consume more space than it would produce enlightenment,
yet another interval within which the building’s height must necessarily lie. Should this
new information contradict our previous store of knowledge, we would like to know; and
since the system maintains dependency information, it can even tell us which premises lead
to trouble.

(add-content building-height
(supported (make-interval 46. 50.) ’(pressure)))

(contradiction (superintendent pressure))

Indeed, if we ask after the height of the building under this regime of contradictory infor-
mation, we will be informed of the absence of a good answer,

(tms-query (content building-height))
#(supported #(*the-contradiction*) (superintendent pressure))

but it is appropriate for the system not to propagate consequences deducible in an incon-
sistent worldview.

(tms-query (content barometer-height))
#(supported #(interval .3 .30328) (superintendent shadows))

It is up to us as the users of the system to choose which worldview to explore. We can
ascertain the consequences of disregarding the superintendent’s assertions, both on our
understanding of the height of the building

(kick-out! ’superintendent)
(tms-query (content building-height))
#(supported #(interval 46. 47.243) (fall-time pressure))

and on that of the barometer.

(tms-query (content barometer-height))
#(supported #(interval .30054 .31839)

(pressure fall-time shadows))

Doing so does not cost us previously learned data, so we are free to change worldviews at
will, reasoning as we like in one consistent worldview or another.
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(bring-in! ’superintendent)
(kick-out! ’pressure)
(tms-query (content building-height))
#(supported 45 (superintendent))
(tms-query (content barometer-height))
#(supported #(interval .3 .30328) (superintendent shadows))

Making this work
It suffices to modify our existing truth maintenance system in just two places to check for the
consistency of computed results. The procedure tms-merge needs to check the consistency
of the newly deduced consequence

(define (tms-merge tms1 tms2)
(let ((candidate (tms-assimilate tms1 tms2)))

(let ((consequence (strongest-consequence candidate)))
(check-consistent! consequence) ; **
(tms-assimilate candidate consequence))))

(defhandler merge tms-merge tms? tms?)

and the procedure tms-query needs to check the consistency of the answer it is about to
return. *** TODO (Optional): Explain why this is necessary and sufficient? ***

(define (tms-query tms)
(let ((answer (strongest-consequence tms)))

(let ((better-tms (tms-assimilate tms answer)))
(if (not (eq? tms better-tms))

(set-tms-values! tms (tms-values better-tms)))
(check-consistent! answer) ; **
answer)))

Actually checking that something is consistent amounts verifying that it is not contra-
dictory. The interesting part is extracting the nogood set of premises that support the
contradiction, so that something can be done with it.

(define (check-consistent! v&s)
(if (contradictory? v&s)

(process-nogood! (v&s-support v&s))))

The simplest process-nogood! procedure just aborts the process, giving the user a chance
to adjust the worldview to avoid the contradiction:

(define (process-nogood! nogood)
(abort-process ‘(contradiction ,nogood)))

This will be expanded next.

4.4 Dependencies improve Search

Implicit generate-and-test can be viewed as a way of making systems that are modular
and independently evolvable. Consider a very simple example: suppose we have to solve
a quadratic equation. There are two roots to a quadratic. We could return both, and
assume that the user of the solution knows how to deal with that, or we could return one
and hope for the best. (The canonical sqrt routine returns the positive square root, even
though there are two square roots!) The disadvantage of returning both solutions is that
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the receiver of that result must know to try his computation with both and either reject
one, for good reason, or return both results of his computation, which may itself have made
some choices. The disadvantage of returning only one solution is that it may not be the
right one for the receiver’s purpose.

A better way to handle this is to build a backtracking mechanism into the infrastructure.[22,
28, 36, 2, 48] The square-root procedure should return one of the roots, with the option to
change its mind and return the other one if the first choice is determined to be inappro-
priate by the receiver. It is, and should be, the receiver’s responsibility to determine if the
ingredients to its computation are appropriate and acceptable. *** TODO (Optional):
Relate this to end-to-end protocols? In a footnote? *** This may itself require a
complex computation, involving choices whose consequences may not be apparent without
further computation, so the process is recursive. Of course, this gets us into potentially
deadly exponential searches through all possible assignments to all the choices that have
been made in the program. As usual, modular flexibility can be dangerous.

We can reap the benefit of this modular flexibility by burying search into the already-
implicit control flow of the propagator network. Tracing dependencies helps even more
because it enables a smarter search. When the network is exploring a search space and
reaches a dead end, it can determine which of the choices it made actually contributed to
the dead end, so that it can reverse one of those decisions, instead of an irrelevant one, and
so that it can learn from the mistake and avoid repeating it in the future.

We illustrate this idea with some information about the building’s occupants we have
gleaned, with due apologies to Dinesman [15], from the chatty superintendent while we
were discussing barometric transactions:

Baker, Cooper, Fletcher, Miller, and Smith live on the first five floors of this
apartment house. Baker does not live on the fifth floor. Cooper does not live
on the first floor. Fletcher does not live on either the fifth or the first floor.
Miller lives on a higher floor than does Cooper. Smith does not live on a floor
adjacent to Fletcher’s. Fletcher does not live on a floor adjacent to Cooper’s.

Should we wish to determine from this where everyone lives, we are faced with a search
problem. This search problem has the interesting character that the constraints on the
search space are fairly local; the failure of any particular configuration is attributable to
the violation of a unary or binary constraint. This means that even though the entire space
has size 55 = 3125, studying the cause of any one failure can let one eliminate 54- or 53-
sized chunks of the space at each dead end. Using a system that tracks these dependencies
automatically can relieve us of having to embed that knowledge into the explicit structure
of the search program we write.

The extension we need make to the system we already have is to add a propagator
that makes guesses and manufactures new premises to support them, and to modify the
contradiction detection machinery to inform the guessers of their mistakes and give them
the opportunity to change their minds.

To make the example concrete, Figure 4-3 shows a direct encoding of the problem state-
ment above as a propagator network.3

Observe the generators one-of, which guess floors where people live but reserve the right
to change their minds later, and testers require and forbid that point out situations that
necessitate changing of minds.

We can run this in our augmented system to find the right answer,

3This ugly program is written in the moral equivalent of assembly language. Even a relatively straightforward
expression-oriented frontend could let us write something far more pleasant:
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(define (multiple-dwelling)
(let ((baker (make-cell)) (cooper (make-cell))

(fletcher (make-cell)) (miller (make-cell))
(smith (make-cell)) (floors ’(1 2 3 4 5)))

(one-of floors baker) (one-of floors cooper)
(one-of floors fletcher) (one-of floors miller)
(one-of floors smith)
(require-distinct
(list baker cooper fletcher miller smith))
(let ((b=5 (make-cell)) (c=1 (make-cell))

(f=5 (make-cell)) (f=1 (make-cell))
(m>c (make-cell)) (sf (make-cell))
(fc (make-cell)) (one (make-cell))
(five (make-cell)) (s-f (make-cell))
(as-f (make-cell)) (f-c (make-cell))
(af-c (make-cell)))

((constant 1) one) ((constant 5) five)
(=? five baker b=5) (forbid b=5)
(=? one cooper c=1) (forbid c=1)
(=? five fletcher f=5) (forbid f=5)
(=? one fletcher f=1) (forbid f=1)
(>? miller cooper m>c) (require m>c)
(subtractor smith fletcher s-f)
(absolute-value s-f as-f)
(=? one as-f sf) (forbid sf)
(subtractor fletcher cooper f-c)
(absolute-value f-c af-c)
(=? one af-c fc) (forbid fc)
(list baker cooper fletcher miller smith))))

Figure 4-3: The superintendent’s puzzle

(define answers (multiple-dwelling))
(map v&s-value (map tms-query (map content answers)))
(3 2 4 5 1)

and observe how few dead ends the network needed to consider before finding it.

*number-of-calls-to-fail*
63

In contrast, a naive depth-first search would examine 582 configurations before finding the
answer. Although clever reformulations of the program that defines the problem can reduce
the search substantially, they defeat much of the purpose of making the search implicit.

Making this work
We start by adding a mechanism for making guesses in Figure 4-4. This works by manu-
facturing two new premises, and adding to its cell the guess #t supported by one premise
and the guess #f supported by the other. It also creates a propagator that will ensure

(define (multiple-dwelling) (let ((baker (one-of 1 2 3 4 5)) (cooper (one-of 1 2 3 4 5)) (fletcher
(one-of 1 2 3 4 5)) (miller (one-of 1 2 3 4 5)) (smith (one-of 1 2 3 4 5))) (require-distinct (list
baker cooper fletcher miller smith)) (forbid (= baker 5)) (forbid (= cooper 1)) (forbid (= fletcher
5)) (forbid (= fletcher 1)) (require (> miller cooper)) (forbid (= 1 (abs (- smith fletcher))))
(forbid (= 1 (abs (- fletcher cooper)))) (list baker cooper fletcher miller smith)))
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(define (binary-amb cell)
(let ((true-premise (make-hypothetical))

(false-premise (make-hypothetical)))
(define (amb-choose)
(let ((reasons-against-true

(filter all-premises-in?
(premise-nogoods true-premise)))

(reasons-against-false
(filter all-premises-in?

(premise-nogoods false-premise))))
(cond ((null? reasons-against-true)

(kick-out! false-premise)
(bring-in! true-premise))
((null? reasons-against-false)
(kick-out! true-premise)
(bring-in! false-premise))
(else ; this amb must fail.
(kick-out! true-premise)
(kick-out! false-premise)
(process-contradictions
(pairwise-union reasons-against-true

reasons-against-false))))))
((constant (make-tms

(list (supported #t (list true-premise))
(supported #f (list false-premise)))))

cell)
;; The cell is a spiritual neighbor...
(propagator cell amb-choose)))

Figure 4-4: A guessing machine

#t

#f

Figure 4-5: Conventional diagram of a binary-amb

that any stable worldview always believes exactly one of these premises. This propagator
is awakened every time the worldview changes. We adopt Figure 4-5 as the diagrammatic
picture for this compound.

Premises accumulate reasons why they should not be believed (data structure details in
Appendix A.4). Such a reason is a set of premises which forms a nogood if this premise
is added to it. If all the premises in any such set are currently believed, that consitutes a
valid reason not to believe this premise. If neither of a guesser’s premises can be believed,
the guesser can perform a resolution step to deduce a nogood that does not involve either
of its premises.
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The pairwise-union procedure is a utility that takes two lists of sets (of premises) and
produces a list of all the unions (eliminating eq?-duplicates) of all pairs of sets from the two
input lists. This constitutes a resolution of the nogoods represented by the reasons-against-true
with those represented by the reasons-against-false.

When multiple contradictions are discovered at once, we choose to act upon just one of
them, on the logic that the others will be rediscovered if they are significant. We choose
one with the fewest hypothetical premises because it produces the greatest constraint on
the search space.

(define (process-contradictions nogoods)
(process-one-contradiction
(car (sort-by nogoods

(lambda (nogood)
(length (filter hypothetical? nogood)))))))

If a contradiction contains no hypotheticals, there is nothing more to be done automati-
cally; we abort the process, giving the user a chance to adjust the worldview manually. If
there are hypotheticals, however, we avoid the contradiction by arbitrarily disbelieving the
first hypothetical that participates in it. We also tell all the participating premises about
the new nogood so that it can be avoided in the future.

(define (process-one-contradiction nogood)
(let ((hyps (filter hypothetical? nogood)))

(if (null? hyps)
(abort-process ‘(contradiction ,nogood))
(begin

(kick-out! (car hyps))
(for-each (lambda (premise)

(assimilate-nogood! premise nogood))
nogood)))))

Teaching a premise about a nogood has two bits. The first is to remove the premise from
the nogood to create the premise-nogood we need to store. The second is to add it to the
list of premise-nogoods already associated with this premise, taking care to eliminate any
subsumed premise-nogoods (supersets of other premise-nogoods).

(define (assimilate-nogood! premise new-nogood)
(let ((item (delq premise new-nogood))

(set (premise-nogoods premise)))
(if (any (lambda (old) (lset<= eq? old item)) set)

#f
(let ((subsumed

(filter (lambda (old) (lset<= eq? item old))
set)))

(set-premise-nogoods! premise
(lset-adjoin eq?

(lset-difference eq? set subsumed) item))))))

Finally, we have the machinery to let a contradiction discovered in the network (by
check-consistent!, see page 56) trigger an automatic change in the worldview.

(define (process-nogood! nogood)
(set! *number-of-calls-to-fail*

(+ *number-of-calls-to-fail* 1))
(process-one-contradiction nogood))
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Just for fun, we count the number of times the network hits a contradiction.
*** TODO (Optional): Move (or copy?) this paragraph into the DDB sec-

tion in Chapter 5? *** The emergent behavior of a bunch of binary-amb propagators
embedded in a network is that of a distributed incremental implicit-SAT solver based on
propositional resolution. This particular SAT solver is deliberately as simple as we could
make it; a “production” system could incorporate modern SAT-solving techniques (e.g., [1])
from the abundant literature. The network naturally integrates SAT-solving with discover-
ing additional clauses by arbitrary other computation. From the point of view of the SAT
solver, the SAT problem is implicit (in the computation done by the network). From the
point of view of the computation, the search done by the SAT solver is implicit.

Ambiguity Utilities
A few “assembly macros” are still needed to make our example program even remotely
readable. Since the cells already detect contradictions, require and forbid turn out to be
very elegant:

(define (require cell)
((constant #t) cell))

(define (forbid cell)
((constant #f) cell))

The require-distinct procedure just forbids the equality of any two of the supplied cells.

(define (require-distinct cells)
(for-each-distinct-pair
(lambda (c1 c2)

(let ((p (make-cell))) (=? c1 c2 p) (forbid p)))
cells))

Upgrading a binary choice to an n-ary choice can be a simple matter of constructing a linear
chain of binary choices controlling conditionals,4 like Figure 4-6. *** TODO (Optional):
Mention more sensibly that the conditional itself is first defined (and pictured)
in Section 6.1 ***

(define (one-of values output-cell)
(let ((cells

(map (lambda (value)
(let ((cell (make-cell)))
((constant value) cell)
cell))

values)))
(one-of-the-cells cells output-cell)))

4We are using the conditional box we will describe carefully in Section 6.1. Suffice it to say for now that
it forwards one or the other of its inputs on to its output, based on the value of its control, and adds the
dependencies of the control to the dependencies of the output it produces.
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#f
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#f

link

link
p

p

p

p

...

Figure 4-6: A linear chain turning binary guessers into an n-ary guesser

(define (one-of-the-cells input-cells output-cell)
(cond ((= (length input-cells) 2)

(let ((p (make-cell)))
(conditional p
(car input-cells) (cadr input-cells)
output-cell)

(binary-amb p)))
((> (length input-cells) 2)
(let ((link (make-cell)) (p (make-cell)))

(one-of-the-cells (cdr input-cells) link)
(conditional
p (car input-cells) link output-cell)
(binary-amb p)))

(else
(error "Inadequate choices for one-of-the-cells"

input-cells output-cell))))
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Chapter 5

Expressive Power

We have built the core of a general-purpose propagation infrastructure in Chapter 3. We
have used it, without modification, to track dependencies and support multiple worldviews
in Chapter 4. That was a very detailed and careful example of the generality and flexibility
of the idea of propagation; it also showed that carrying around additional information with
long-range identities (dependencies, in that instance) is a valuable design pattern for using
propagation to do things that may seem surprising at first. *** TODO (Optional): How
about actually discussing the ramifications of that design pattern somewhere?
Like the place I present it? *** Let us now look upon the extent of propagation’s
expressive power from a greater distance, so as to look over more ground. We will study the
task of building a complete programming system on this expressive substrate in Chapter 6.

5.1 Dependency Directed Backtracking Just Works

Search strategies have interested AI researchers since the inception of the field. Many and
sundry have been invented; but I want to talk about one in particular because it benefits
drastically from a propagation infrastructure. As such, it can perhaps serve as an example
of a new class of search strategies that were very difficult to explore under the evaluation
paradigm.

The strategy in question is called dependency-directed backtracking . We made our network
do this in Section 4.4, but let us take a minute to examine what happened, and why this
is not like the searches one is used to. To understand the idea, consider an abstract search
problem. We are used to thinking of searches as linear sequences of choices—first make one
choice, then make another choice, possibly using the first one, and so on. We are therefore
used to drawing such search spaces as trees like Figure 5-1: branch on how the first choice
went, then in each branch, branch again on how the second choice went, etc.

This meshes wonderfully with the evaluation paradigm of computing. Evaluation forces
an order on time, and the choices we have to make fit into that order. We think of the
search space as a tree, and our search program traverses that tree in, say, depth-first order.
And every time a (leaf?) node of the tree is found unacceptable, the search program just
sighs, backtracks to the last choice it made, and tries another guess. This process can in
fact be made implicit with a device like amb [36, 2], (which can be implemented as a library
for an evaluation-style language using continuations [49]), thereby cleanly separating the
program from the search strategy.

But now suppose we want a more sophisticated search strategy. Suppose that we had a
mechanism for tracking the consequences of each of our choices. In other words, suppose
we could maintain dependencies such that whenever we found a node in the search space
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a ¬a

¬bb ¬bb

¬ccc¬cc c

d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d

¬c¬c

Figure 5-1: A search tree over the four binary choices a, b, c, d. Without further infor-
mation, a search would have to examine all 16 combinations of choices to determine that
{¬a, b, c,¬d} was the only acceptable arrangement.

unacceptable, we had a list of which choices actually mattered for reaching that unacceptable
state. For instance, suppose our search could discover, as it progressed, that each of the sets
of choices {a, b}, {¬b, c}, {¬c}, and {¬a, b, c, d} was unacceptable, as in Figure 5-2. Then
there are three ways we could make our search better.

First, instead of returning to an arbitrary (and perhaps irrelevant) choice (such as the
chronologically last one made), we can return to the last choice that actually mattered for
producing the observed failure. (This is what’s going on in the left half of Figure 5-2.) This
saves us from rediscovering the same contradiction again and again while we vary choices
made after those that will force that contradiction to occur. This much is easy to implement
with continuations.

Second, we can memorize the sets of choices that caused failures, and ask our choice
nodes to avoid them in the future. (This is what’s going on in the right half of Figure 5-2.)
Such memorized choice sets are called nogood sets, or just nogoods. This would save us
from rediscovering the same contradition over and over again while we vary choices that
were made before the ones that forced the contradiction, but which do nothing to forestall
it. In the example, changing a to ¬a does not save us from the contradiction {¬b, c} (or
{¬c}, for that matter). Now this is suddenly a pain to do with continuations, because
when we backtrack past one of the choices in our nogood set, we must somehow remember
about it, so that when we return to that choice point later in the search, we remember the
nogoods we learned about it; in other words, our choices need to have explicit identities, as
in Figure 5-3. That’s actually very difficult, because the natural amb device makes a fresh
choice point every time it is called, and if one invokes a continuation to backtrack past one
of them, its identity will be forgotten. *** TODO (Optional): Is there literature
about this? [58, 25] ***

Third, if we’re tracking the dependencies anyway, then when we change a choice, we
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—{a,b}— {¬c}{¬b,c} {¬b,c}{¬c} {¬c}

a ¬a

¬bb ¬bb

¬ccc¬cc c

d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d

¬c¬c

Figure 5-2: A search tree with dependency information explaining the reasons for failures.
A search that uses the dependency information can get away with examining just five of
the terminal positions, and can also avoid a fair amount of intermediate computation.

a ¬a

¬bb ¬bb

¬ccc¬cc c

d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d d ¬d

¬c¬c

Figure 5-3: A search tree does not capture choice identity.
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c

b

¬c

d ¬d d ¬d

a

¬a

a

¬a

¬b

Figure 5-4: A search hypercube. Discovered nogoods can eliminate large chunks of the cube
at once: Each of the nogoods {a, b}, {¬b, c}, {¬c}, and {¬a, b, c, d} is indicated with its
own shading.

should be able to avoid recomputing anything that doesn’t depend on that choice. This is
also very difficult to do with continuations, because again, there is no good way to keep
track of the fact that one is invoking the same continuation with different values, and have
it “just remember” things it already computed that are not affected by the new value you
are supplying.

These troubles are all due to the over-rigid notion of time that follows from the evaluation
strategy. When one is evaluating, time is linear, and everything that comes after automat-
ically depends on everything that came before. So even if you can track the dependencies
and discover things that are independent, there is no way to go back and change your mind
about only the computational consequences of a choice, rather than about everything that
chronologically followed it.

Moving to propagation instead of evaluation solves this problem. Propagation has a
much more flexible intrinsic notion of time. Implicit dependency-directed backtracking can
be achieved by propagating a truth maintenance data structure, as we did in Section 4.4.

Doing that removes the linear-branching structure of our search “tree”. Each choice
becomes an entity in its own right, instead of being a row of nodes in a search tree; so their
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identities are conserved. The result is less of a search tree and more of a search hypercube,
where each choice is its own (Boolean) dimension. For our example, this is shown, as best
a four-dimensional structure can be shown on a sheet of paper, in Figure 5-4.

The state of the search is now stored explicitly in partial information structures in the
cells instead of implicitly in the control flow of the evaluation. When a choice needs to be
changed, the partial information structure at that choice changes, and its consequences are
propagated to those cells that depend on it. Other choices are automatically unaffected,
and intermediate values that don’t depend on the choice are automatically not recomputed.
There are no spurious dependencies on the order in which choices are made, so those spurious
dependencies don’t cause any trouble.

*** TODO (Optional): Part of the ideology of why this may be a good idea
is that some computations (e.g., symbolic algebra) are very expensive, and so
it is worth avoiding them at almost any cost in fooling around with dependency
structures. ***

*** TODO (Optional): DDB replicates much of the benefit of constraint
propagation. In fact, knowing the kinds of deductions to make can amount to
just knowing how to schedule the guesses under a DDB engine so that it finds
small nogoods fast. (Actually some deductions, like interval constraints, can be
much stronger than that. But others are not). (On yet a third hand, I seem to
find hypotheticals very expensive, at least when solving puzzles, so I really like
to make deductions as much as possible, and search only as a last resort. So
maybe the constraint propagation story has something to say about building
AI.) ***

*** TODO (Optional): Considered from the propagators’ perspective, DDB
is just a design pattern for solving long-range Boolean dependencies—if raw
propagation back and forth is not enough to deduce the answer, make a guess,
propagate it as far as it will go, and if you hit any contradictions, send them
back to the guess so it can be adjusted. In this sense, the symbolic algebra in
the voltage divider example is the same design pattern applied to long-range
real-values dependencies—if raw propagation back and forth is not enough to
deduce the answer, guess a real number, propagate symbolic equations in it as
far as they will go, and maybe you will discover some nontrivial equation that
you can solve to figure out what the real number must have been. ***

5.2 Probabilistic Programming

*** TODO (Optional): This section is rather drafty. Either clean it up or
suppress it. ***

*** TODO (Optional): How do I lead in to this? ***
The idea of probabilistic programming has been the subject of much recent research. [45,

24, 44] The motivating observation is that many useful programs need to perform deductions
under regimes of uncertain knowledge, and probability theory is the extension of classical
logic to reasoning with propositions whose truth is not certain [30]. Furthermore, the laws
of probabilistic reasoning are strict enough to implement once for the general case, and yet
subtle enough that humans regularly misapply them in specific cases. Both of these point
to the potential benefit of embedding those laws in a programming system, so that human
programmers can focus on writing programs in it, and the system itself can take care of
obeying the rules of probability correctly.

Many such systems have been built. [41, 38] They vary in their surface syntax and ex-
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pressivity, but the basic idea is that an expression like

(if (flip 1/3)
1
(if (flip 1/2)

2
3))

represents both a random process (in this case, a process with one wieghted coin flip,
and possibly another fair coin flip depending on how the first flip went) and a probability
distribution on the possible results of that process (in this case the uniform distribution
on {1, 2, 3}). The system’s job, then, is to allow the programmer to write as expressive
a set of such programs as the system can support, and then to answer questions about
the distributions those programs represent. There are many possible means of deducing
information about the distribution from the defining process; these are called inference
strategies, and they also vary widely from one probabilistic programming system to another.

Probabilistic programming is essentially multidirectional because of evidence. The rules
of probability (and of normal logic, for that matter) demand that observation of effects be
able to yield information about causes. For example, suppose you come home one day and
observe that the grass on your lawn is wet. Suppose, further, that in this idealized world,
the only way the grass could have gotten wet was either for it to have rained or for the
sprinkler to have turned on and sprinkled it. Then you can deduce that one of those two
things must have happened. The wetness of the grass does not physically cause either rain
or sprinkling—quite the contrary—but wetness logically causes you to deduce something
about rain and sprinkling.

Supposing we are interested in our deductions about both whether it rained and whether
the sprinkler sprinkled, we can write this scenario down as a probabilistic program as follows:

(let ((rained? (flip 1/5))
(sprinkled? (flip 4/5)))

(let ((wet? (or rained? sprinkled?)))
(observe! wet?) ; **
(list rained? sprinkled?)))

Here we have an explicit model of the situation. We are positing that our prior knowledge
(before observing the wetness of the grass) is that it rains 20% of the time, and that the
sprinkler activates 80% of the time, independently of whether or not it rains. We are further
positing that the grass is wet if and only if it either rained or sprinkled (or both), and, on
the line marked **, that the grass is, indeed, wet.

If we tasked a probabilistic programming system with producing the distribution of pos-
sible return values of that expression, that agree with the observation that the grass is wet,
it should give us a moral equivalent of

(((#t #t) . 4/21)
((#f #t) . 16/21)
((#t #f) . 1/21))

Such an answer means that the probability that it rained and sprinkled is 4/21, the proba-
bility that it sprinkled and didn’t rain is 16/21, and the probability that it rained but didn’t
sprinkle is 1/21 (and the probability that it neither rained nor sprinkled is zero, because
then the grass would not have been wet).

Observe how learning about the wetness of the grass raised the probability of it having
rained from the prior 1/5 to the posterior 5/21, and the probability of the sprinkler having
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turned on from the prior 4/5 to the posterior 20/21. Of course, the grass being wet has no
physical effect on the rain, but it gives us information about whether it rained or not, and
the probability of rain having occurred given our knowledge goes up. So reasoning is multi-
directional: besides obviously having to reason forward along the direction of causality, from
known causes to presumed effects, we must also be able to reason backward, from observed
effects to hypothesized causes. (In fact, probability theory is so useful exactly because it
teaches us what the right answers are when reasoning from effects to causes; but that still
leaves open the question of how to compute those answers.) So every implementation of
a probabilistic programming system must embody one or another way by which observing
evidence affects the probabilities of causally related events (regardless of the direction of
the causality links).

Several different inference strategies have been implemented in various probabilistic pro-
gramming systems to date. Some, such as [24, 38], focus on answering questions by running
the randomized process many times and counting the frequencies of events of interest. Such
systems must either discard or cleverly avoid runs that disagree with the asserted observa-
tions. This discarding is the channel of communication between the evidence and its causes
in these systems.

Other probabilistic programming systems, such as [44, 41], perform some sort of system-
atic search over the possible courses the randomized process could follow. Such systems
must backtrack when they discover violations of asserted observations. This backtracking
is the channel of communication between the evidence and its causes in these systems. In
both cases, the channel is fairly narrow: the only thing the evidence can say is “I don’t like
this state. Try another.” That’s not very informative.

*** TODO (Optional): Order of saying these words ***
*** TODO (Optional): Could this description be clearer? ***
Let us imagine a naive inference strategy: Every randomized operation (i.e., flip) returns

a probability distribution data structure that essentially looks like an association between
the possible values and their probabilities. (In the case of flip this would have two entries.)
Then, we overload every operation to respect such structures, and use the product rule to
combine probabilities where needed. Unfortunately, this strategy doesn’t work, because it
ignores dependencies. Consider the difference between

(let ((rained? (flip 1/5))
(sprinkled? (flip 4/5)))

(list rained? sprinkled?))

and

(let* ((rained? (flip 1/5))
(sprinkled? (not rained?)))

(list rained? sprinkled?))

In both cases, the distribution of sprinkled? is “#t with probability 4/5 and #f with
probability 1/5,” but in the former case, it is independent of rained? and in the latter case
it is perfectly anticorrelated with rained?. But, if we represented the distributions with
completely local data structures, there would be no way for list to know the difference. It
would presumably always assume independence, and give the wrong answer for the latter
example.

Both the sampling-based strategies and the search-based strategies implicitly represent
these potential dependencies in the chronology of the simulated run of our randomized
process. In both cases, the joint probability distribution over rained? and sprinkled? is
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implicit in the control structure of the inference engine, and the latter example never puts
the inference engine into a position where rained? and sprinkled? are both #t (or both
#f).

Propagator networks offer the possibility of a different inference strategy. We have seen
how to explicitly track dependencies in Section 4.4, and this produced a new search strategy
called dependency-directed backtracking. We can do the same for probabilistic inference. In
fact, the flip device can function exactly like the binary-amb device, except that it must
also remember the prior probability of making either choice. *** TODO (Optional):
Explain this better: *** Then, if we like, we can let the search proceed in a dependency-
directed manner, exactly as it would if there were no probabilities involved. The product
of the prior probabilities determines the probability of any particular consistent answer up
to the normalizing constant; the normalizing constant is exactly the volume in probability
space that is eliminated by the discovered nogood sets.

If we do probabilistic inference this way, we automatically gain a wider channel for
backward communication. Instead of merely saying “I don’t like this state,” a piece of
evidence can at the very least indicate the choices that led to the bad state. Furthermore,
one expects that in many cases the multidirectionality of propagation can be used to greater
effect: sometimes the evidence can lead directly to deductions about its immediate causes,
without having to wait for a hypothetical value to come flying in. This is called evidence
pushing [41].

Even though the prior probabilities for how to make each choice are not strictly necessary
for doing probabilistic inference by dependency-directed backtracking, they can help guide
the search. Specifically, the network can try to arrange to always be considering the most
likely as-yet-unexplored set of choices. “Most likely” in this setting can mean either “highest
prior probability” or “highest posterior probability given the nogood sets discovered so far.”

On the other hand, probabilistic inference is a hairier problem than just search. The
reason is that basic search (including the dependency-directed backtracking presented in
Section 4.4) is concerned with whether or not some answer is possible (i.e., consistent with
all the requirements), whereas probabilistic inference asks also how probable something is.
The difference is that whether a set of choices leads to a possible state depends only on
that set of choices (and their direct consequences, and whether those consequences include
a contradiction), whereas how probable that state is also depends on whether other choices
lead to contradictions, because each thing that proves impossible makes everything that is
still possible more likely.12

*** TODO (Optional): It may therefore make sense to let various deductions
about the probabilities of things propagate too. Then there will be two kinds
of propagation: propagation in the “object world,” where the consequences
of various premises are worked out and various nogood sets are detected; and
propagation in a “strength-of-belief world,” where numerical consequences of
those nogood sets on the posterior probabilities of various things flow around
and update. I don’t know the right way to do this. ***

*** TODO (Optional): [Does this idea go here or under deciders at the
end?] Probability theory has an interesting feature that is absent from the

1To borrow Arthur Conan Dolye’s [17] immortal words:

When you have eliminated the impossible, whatever remains, however [a priori] improbable,
must be the truth.

2Complexity theorists would say that search is a SAT problem, while inference is a #SAT problem; would
prove that the latter is certainly no easier; and would theorize that in fact it is strictly harder.
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other partial information structures we have studied in this dissertation. That
feature is that it comes with its own rules for making decisions. If one has some
objective, which is encoded in the effort to maximize some utility function,
what is one to do? If one knows the state of world (or at least the part that
impinges on one’s utility) exactly, one is in luck, for one can just pick the action
that maximizes said utility. But what if not? What if one’s information about
the world is incomplete? Probability theory has an answer: maximize expected
utility (where the expectation is taken over the probability distribution that
represents the knowledge one does have about the world). Even better, one
need not always compute even the probability distribution completely: If the
only things one does not know are sufficiently unlikely and make sufficiently
little difference to one’s utility, one can make a perfect decision without even
having perfect information about one’s knowledge of the world, never mind
perfect information about the actual world. ***

5.3 Constraint Satisfaction Comes Naturally

The first thing many people think when they hear “propagator” is “constraint satisfaction”.
Indeed, the present work is closely related to the constraint satisfaction field [5], if subtly
different.

The main difference is that while constraint solvers generally do incorporate propagation
systems, those propagation systems are usually very special-purpose, tailored to run under
that particular constraint solver. Furthermore, the constraint solver has an additional
flow of control, namely a search, outside the propagation machine. For both of those
reasons, different constraint solvers don’t play very well together, and don’t compose and
interoperate with other uses of propagation.

We will see in this section that the traditional constraint solver design is not the only
possible one: we can build complete constraint solvers inside our general-purpose propaga-
tion infrastructure. We will need to use the dependency tracking we learned in Chapter 4
to subsume the search a constraint solver does into the propagation process, but we can
do that without altering the propagation infrastructure, and without subjecting it to an ex-
ternal control loop that performs a search. Therefore, propagation can remain a common
language with which such constraint solvers can talk to each other and to other propagating
systems.

Special-purpose though constraint-satisfying propagation systems usually are, a great
deal of research, e.g., [8, 33, 55], has gone into improving them. I expect that much of it
can be generalized to the present general-purpose propagation; other work on improving
constraint satisfaction can be reused directly in the form of specific, well-worked-out prop-
agators for specific purposes. In Section 5.3.3 we discuss some of those advances and their
applicability to the present case.

5.3.1 Description

Before diving into how we can do constraint satisfaction differently, a brief review of the
standard approach is in order. The usual definition of constraint satisfaction is: Let there
be some set of variables. For each variable, allow it to take on values from some domain.3

3The domains need not be the same across variables; further, they need not necessarily be finite, but of
course they do need to be finitely representable (e.g., a union of intervals over the real numbers).
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Figure 5-5: A Sudoku puzzle. The task is to complete the grid of squares with digits from 1
through 9 so that each row, each column, and each bold three-by-three square has exactly
one of each digit.

Further, impose some set of constraints on the possible combinations of the values of the
variables. Given all that, the constraint satisfaction problem is to find one (or all) assign-
ment of values to variables, such that each variable really does take on a value from its
domain, and such that all the constraints are satisfied; or to deduce that this is impossible.

For example, the popular Sudoku puzzles are readily expressible as constraint satisfaction
problems. Each puzzle consists of a nine-by-nine grid with some digits written in, like
Figure 5-5. The puzzle is to fill each remaining space in with a digit from one to nine so
that each row, each column, and each of the nine three-by-three subgrids has exactly one of
each digit. The constraint satisfaction formulation follows: every empty cell is a variable, its
domain is the set {1, . . . , 9}, and the constraints are twenty-seven all-different constraints
among nine squares each (some of which are variables, and some of which are already
known).

In general, solving a constraint satisfaction problem requires search. One might consider,
therefore, the following strategy for solving such a problem: enumerate all possible assign-
ments of values to variables; check each of them for satisfying the constraints; and return
those that do. Such a search is, of course, distressingly exponential, rendering this strategy
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impractical, so the usual approach is to interleave each step of the search with a propagation
step, where the constraints are used to prune the search space by narrowing the domains
of the variables. To do this, systems keep track of the “current domain” of each variable;
use that information in the propagation step to narrow the domains of other variables as
much as possible; and then guess further narrowings of the domains in the search, every
time propagation reaches a fixed point.

For example, if one were solving Sudoku, one might maintain the set of digits that may,
as far as one currently knows, appear in a particular square. Then, of course, any such
set can be diminished by removing digits that are already known to appear in any of the
squares in the same row, column, or block as the square in question. Such removals may
perhaps eliminate all but one of the options a square has; then more can readily be said
about the possibilities open to its neighbors.4 In principle, there could be long chains of
deductions of this kind, traveling this way and that over the problem space. There is no
good way to sequence all such deductions that will occur in a problem before starting to
solve the problem, so one needs some form of propagation to deduce all the consequences
coherently. But then if it so chanced that one had exhausted one’s ability to deduce, one
must still fall back on search, to guess something about one of the squares, propagate the
consequences of that guess, and backtrack if it leads to a contradiction.

5.3.2 Embedding

How can we build a constraint solver on the present propagation infrastructure? Well, any
representation of a variable domain is a good candidate for a partial information structure.
Let us represent every variable with a cell. Let us store the current domain of that variable as
the partial information structure in that cell. For each constraint, let us make a propagator
that narrows the domains of the relevant variables in accordance with the requirements of
that constraint.5 In the case of Sudoku, the partial information structures will be sets of
the digits that can appear in the square, and the propagators will extract some information
of our choosing out of the fact that the appropriate groups of nine are supposed to be
different, such as removing the 5 from the sets of values possible for all squares in the same
row, column, or block as a known 5.

If we do this, our general-purpose infrastructure will implement the propagation step of a
constraint satisfaction system. That much is good; but what about the search? The search
is the place where something spectacular happens.

Domain representations are partial information structures. Truth maintenance systems
from Section 4.2 are partial information structures that expect to contain partial information
structures. What happens if we put the former inside the latter? Then a cell for Sudoku
might contain a TMS like

{4, 5, 8, 9} :A, {4, 5} :A,B, {2, 4, 5} :B, {2, 4, 5, 8, 9} :

which says “I know this square can only contain a 2, 4, 5, 8 or 9; and if I believe A then the
2 becomes impossible; and if I believe B then the 8 and the 9 become impossible.” Then we
can subsume the search, which is usually considered a process external to the propagation,
into an emergent behavior of the propagation itself. *** TODO (Optional): Emphasize

4This is just the simplest thing one can do to propagate information about an all-different constraint.
Many algorithms have been developed, of varying simplicity, speed, and pruning strength; see, e.g., [43].

5In general, there are many propagators that serve, theoretically, to enforce a given constraint. [55] studies
their properties and the tradeoffs they expose at great length.
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Figure 5-6: A collection of guessers that will guess a value between one and nine by guessing
each binary digit separately.

that this is a consequence of compositionality ***
Consider the following embedding of a constraint satisfaction problem into this infras-

tructure: Each variable is again a cell, but now it contains a truth maintenance system over
possible “current domains”. Each propagator is lifted appropriately to carry around the de-
pendencies of the domains it operates on.6 Further, attach a pile of binary-amb propagators
*** TODO (Optional): More careful forward reference to switch *** controlling a
pile of switches7 and constants, so as to guess all possible values for the variable in question.
(For Sudoku, this might look like Figure 5-6.) Finally, claim that empty domains constitute
contradictions, so that any set of guesses that leads to some value having an empty domain
becomes a nogood.

6Doing this well, without introducing spurious dependencies, is nontrivial and has great practical conse-
quence. We are not for the present concerned with such details; the point here is that the propagation
infrastructure here presented is general enough to implement a constraint satisfier without modification.

7We will describe the switch propagator carefully in Section 6.1. Suffice it to say that a binary-amb
controlling a switch effectively chooses whether to output some specific partial information (as opposed to
choosing whether to output #t or #f).

74



Then if you run that propagator network, it will eventually settle down into a stable state
that consitutes a solution to the constraint satisfaction problem it embodies. The propaga-
tors that implement the constraints will keep the system honest, by signalling contraditions
and creating nogoods whenever the guesses are inconsistent. The guessers, however, will
drive the system to a fully specified solution. The search that used to have to be an ex-
ternal mechanism becomes an emergent consequence of guesses being made, nogoods being
discovered, and guesses being retracted.8

This is power. By generalizing propagation to deal with partial information structures
that encode the state of the search as well as the usual domain information, we are able
to invert the flow of control between search and propagation: instead of the search being
on top and calling the propagation when it needs it, the propagation is on top, and bits of
search happen as contradictions are discovered. That inversion has a very nice consequence:
by changing the partial information structures that implement the search, we can apply
different searches to different problems, or different portions of the same system, while the
propagation remains unchanged. In particular, the astute reader will have noticed that
the search that emerges from the embedding presented is not the depth-first search that
constraint satisfaction systems typically use, but rather a dependency-directed backtracking
search. Composing partial information structures has given us a constraint satisfier with a
more intelligent search for free.

*** TODO (Optional): Refer to yet different search in voltage divider? ***
Implementing constraint satisfaction in a general-purpose propagation system (as op-

posed to tailoring a special-purpose one for it) also leads to various other generalizations.
For instance, the full constraint problem need not be specified in advance: as computations
occur, new cells and new propagators can be added to the network dynamically, and so
can discover which portion of a potentially infinite constraint problem is actually relevant
to the computation at hand. For another instance, since propagation recovers general pro-
gramming, constraint programs can embed seamlessly into programs meant largely for other
purposes—there is no need to explicitly call an external constraint solver. And symmetri-
cally, our constraint solvers now have a chance to interact and benefit from other uses of
propagation.

5.3.3 Importation

A great deal of the work in constraint satisfaction is on making constraint satisfiers fast
rather than expanding the scope of the paradigm. As such, it is orthogonal to the present
exposition, and some of it can be imported to make the general-purpose infrastructure more
efficient.

One major area of research is on how best to schedule propagators, so as to minimize
the total amount of work required to produce a solution. It would be interesting to try to
generalize that work to general-purpose propagation. To take [55] as an example, Tack’s
work on propagation strength can be reused together with an informativeness-based sched-
uler as discussed in Section 6.4; and Tack’s work on events and propagation conditions can
be reused to improve the (not (eq? answer content)) segment of make-cell.9

8It is probably advantageous to ensure that new guesses are not introduced until after the constraints have
all been enforced, as this prunes the space the search will have to explore. The system as presented has no
way to ensure that, but the scheduler extensions described in Section 6.4 can allow it.

9*** TODO (Optional): Should this optimization get its own (sub)section? Where? *** Specif-
ically, each propagator can register a procedure indicating whether it should be alerted based on what hap-
pened to the cell’s content. Passing (lambda (content new-content) (not (eq? content new-content)))
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*** TODO (Optional): Tack also observes that performance can be improved
if propagators can change their own scheduling conditions and replace them-
selves as domains become more constrained. For example, the watched literals
idea for n-ary or. ***

Another major area of research in constraint satisfaction is in finding efficient propagators
for particular constraints, e.g., [43]. This work can be reused directly, by implementing those
propagators for use with the present infrastructure. It may, however, also be profitable to
reconsider those algorithms in light of novel partial information types. For example, the
infrastructure offers natural dependency-directed backtracking as a possible search, but to
take the best advantage of this search, it would be appropriate to track the consequences
of some choice very carefully. In the Sudoku example, for instance, it may be worth noting
that some square can’t have a 4 because of guess A but that it can’t have a 5 at all, so
that if that is used to deduce the location of the 5 in its row, that deduction will not
carry a spurious dependency on guess A. Doing this well may necessitate a reworking of the
traditional algorithms from the literature.

5.4 Logic Programming Remains Mysterious

*** TODO (Optional): Say what logic programming is? Why we care about it?
Example logic program? ***

On a high level, this work is similar to logic programming in that both attempt to build
complete programming systems whose control flow is implicit. In logic programming, the
implicit control flow is in two places: it is in the bidirectional deductions made by unification,
and in the search process that attempts various clauses when searching for the refutation
of the goal. In this work the implicit control flow is the sequence of propagator activations
(and reactivations) as data travels through a network.

In both cases, the implicit control story works well as long as there are no side effects. The
introduction of side effects into logic programming systems forces a more specified search
order, which in turn threatens to become part of the definition of the method, and undermine
the gains of implicit control. The introduction of side effects into propagator systems is an
interesting topic for future work; see 7.3 for preliminary thoughts on the subject. If the
deleterious consequences of side effects can be avoided (or sufficiently mitigated), the present
work can be a fresh attempt at implicit control, and therefore a more declarative style of
programming.

The partial information lens shows an interesting relationship between differing orders
of evaluation in conventional languages and the idea of logic programming. As discussed in
Section 6.2.5, applicative order evaluation is the discipline of insisting on complete informa-
tion about the argument list of a function before invoking it. In that sense, normal order
is permitting oneself the freedom to invoke a function with only a certain kind of partial
information about the argument list—the list structure itself is known exactly, but each
argument may be completely unknown. Then, if the function turns out to need that argu-
ment, it waits until that argument is completely determined (and supplied to the function),
and then proceeds.

Lazy functional languages like Haskell illustrate that normal order can be useful as a direct

is equivalent to the default behavior, but many spurious re-propagations could perhaps be saved by using
coarser predicates where appropriate. Tack’s event systems can be recovered if it turns out that only a
handful of specific predicates are needed in a particular region of the network; if more than one propagator
registers using the same predicate, they can be stored together and the predicate tested only once. Further,
if implications between those predicates are known in advance, more of the tests can be avoided.
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modification of “standard programming.” I have argued in this dissertation, however, that
mergable partial information is the gateway to multidirectionality. How can we merge the
“incomplete argument list” data structure? It’s just a bunch of cons cells, so it merges by
unification. Now that we know that, we can add multidirectionality to our hypothetical
normal order language, merging the caller’s and callee’s information about a function’s
argument list by unification. The result is very similar to logic programming, in that it has
one of the forms of implicit control that logic programming does, namely that the arguments
to a function call serve as input or output channels acording to what information is available.

Logic programming also contains an aspect of search, for deciding which clause to try
when looking to refute a goal. This is a different sort of implicit control; and trying to
replicate it on the general-purpose propagator infrastructure is an open avenue for further
research. One of the roadblocks is that standard presentations of logic programming make
the search chronological, whereas propagators have no single temporal stream on which to
base a chronological search. Perhaps a more careful study of abstraction in the present
context will yield fruit; perhaps the logic programming search is something like guessing
which of several possible alternate function bodies to apply to any given call site.

An obvious difference between traditional logic programming and the present work is
that this propagation infrastructure is applicable to all manner of partial information, and
is not limited to logical assertions and structural unification. Constraint logic programming
extends logic programming in similar directions, to apply, for instance, to algebraic iden-
tities or constraints. Since the essential nature of the search remains basically the same,
figuring out how to build logic programming on propagators should yield constraint logic
programming for free.

5.5 Functional Reactive Programming Embeds Nicely

*** TODO (Optional): Subsections? ***
Reactive systems like (graphical) user interfaces and interactive animations have tradi-

tionally been annoying to write. The essential problem is that the program must be able to
respond to events initiated by the user, or the outside world generally. The program cannot
predict the sequence in which events will occur, so must be able to react to any event at
any time; control must therefore jump around between different “event handlers” at the
world’s whim, and chaos ensues if the programming environment tries to impose too rigid
a notion of time.

Functional Reactive Programming [18, 56, 39, 11] approaches that problem by writing
such reactive systems as pure functions from (presumably time-varying) inputs to (therefore
presumably time-varying) outputs, and letting a uniform runtime update the intermediate
and output values as appropriate when inputs change.

For example, if one wanted to animate a ball at the current location of the user’s mouse,
one might write

(draw (ball mouse-position))

If ball is a function that takes a position and produces a representation of a graphic (of
a ball) suitable for rendering on screen, and mouse-position is the current position of the
mouse pointer (which changes in response to the user moving the mouse), then the job of
the reactive system is to automatically update the output of (ball mouse-position) when
the mouse moves, and invoke appropriate graphics primitives to redraw it.

The wins are everything one would expect from going up a level of abstraction: greater
clarity of expression, since one need not explicitly worry about state changes, ease of main-
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tenance, better compositionality, etc. For instance, if one wanted to animate a ball that
varied in size as a function of time and followed the mouse around, one could just write

(draw (scale (ball mouse-position) (cos time)))

and the system would automatically take care of redrawing it both when the mouse moved
and when the clock ticked. Note how the programmer is saved the tedium of worrying about
the order of whether the next interesting event will be a mouse movement or a clock tick:
abstraction, composition.

So, we’re sold that functional reactive programming is a good idea, and we want to build
ourselves a system that does it. We immediately find three desiderata:

1. If only a small number of inputs change at any one time, it would be nice to save
effort by not recomputing the values of things that don’t depend on them;

2. Given that, it would be nice to avoid glitches, which might occur if a fresh partial
result is combined with a stale one somewhere; and

3. It would be nice if our implementation were as simple and general as possible.

A first cut at a functional reactive system might be to just rerun the entire inputs-to-
outputs function every time any input changes. This will certainly work, it meets the second
and third desiderata beautifully, and it’s perfectly good for exploring the general functional
reactive idea; *** TODO (Optional): citation? *** but it would be nice if we could
also save our computers some needless crunching by also meeting the first desideratum.

How can we avoid recomputing the consequences of inputs that didn’t change? Since this
is a dissertation about propagation, the answer I’m looking for is to propagate. Specifically,
to propagate only the consequences of inputs that did change, and leave the unchanged
ones alone.

Cooper, under Krishnamurthy, has done some very nice work on implementing func-
tional reactive programming by propagation, in a system called FrTime [11]. FrTime is built
around a custom propagation infrastructure; it nicely achieves both non-recomputation and
glitch avoidance, but unfortunately, the propagation system is nontrivially complicated, and
specialized for the purpose of supporting functional reactivity. In particular, the FrTime
system imposes the invariant that the propagation graph be acyclic, and guarantees that it
will execute the propagators in topological-sort order. This simplifies the propagators them-
selves, but greatly complicates the runtime system, especially because it has to dynamically
recompute the sort order when the structure of the relevant portion of the graph changes
(as when the predicate of a conditional changes from true to false, and the other branch
must now be computed). That complexity, in turn, makes that runtime system unsuitable
for other kinds of propagation, and even makes it difficult for other kinds of propagation to
interoperate with it.

We will take a different approach. Rather than build a custom propagation engine just
for functional reactivity, we will see a way to craft partial information structures to make
our existing propagation infrastructure behave in a reactive way. This offers the great
advantage of generality: we will achieve reactivity on a medium that can also propagate
for other purposes; which will allow our reactive systems to interoperate seamlessly with
other systems that can be expressed in the same medium; and in so doing we will generalize
functional reactive programming in a way that will give us a solution to the long-standing
problem of multiple reactive read-write views for free.

So, how do we build a reactive system on the general-purpose propagation infrastructure
presented in this dissertation? All the locations are cells, of course, and all the computations
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are propagators. The question boils down to: What partial information structure captures
time-variation the way we want? How should it merge, and how should propagators treat
it?

One way suggests itself: Let our partial information structures say “as of time t, the
value here is x.” Let us merge these structures by letting later times take precedence over
earlier times and overwrite them; and let us ask propagators to carry the timestamp from
their inputs forward to their outputs.

Now we have a decision to make: what to do if a propagator has inputs with different
timestamps? We could just let it do the computation and carry the latest timestamp
forward, but that runs the risk of causing glitches. For instance, if somewhere in our
program we had something like

(< time (+ 1 time))

and time increased by 1, we could get into trouble if the < propagator reran before the
+ propagator. Then < would see a fresh value for time but a stale value for (+ 1 time)
and erroneously emit #f. FrTime solves this problem by promising to run the propagators
in a topologically sorted order, but such a promise would make our scheduler too special-
purpose.10

So a propagator whose inputs have inconsistent timestamps should not compute, but
wait until its other inputs refresh.11 Unfortunately, this policy causes a different problem:
if some user input changes and we write the new value with an updated timestamp, we can’t
just leave a (different) unchanged input be, because we have to update its timestamp to tell
the propagators that it is still fresh. Sadly, that causes a cascade of timestamp updates;
and while this approach does work, it amounts to recomputing the whole input-to-output
function every time any input changes, just to verify that the timestamps are all current.

So what do we have? It works. It has no glitches, because the explicit timestamps on
every value prevent inconsistent values from different times from being used for the same
computation. When the network has quiesced at each time step, the outputs correctly
reflect the inputs for that time step. Unfortunately, we have not met the desideratum of
non-recomputation. This is because a value is considered stale if it does not bear the latest
timestamp, and this is too strict a freshness requirement.

*** TODO (Optional): Do Allen’s temporal relations fit in here somewhere?
footnote? ***

*** TODO (Optional): the cells in FrTime’s propagation network do not
properly store accumulating partial information, but rather just the last value
that was computed for them, discarding all previous values. Another is that
FrTime requires the propagation network to be acyclic and computes propaga-
tions according to a topological sort of that network. The latter is done because
FrTime does not explicitly store which values are stale and which ones are up to
date at any given time step, but relies on the order of computations to ensure
that all the values a propagator sees when it runs are fresh. ***

*** TODO (Optional): The requirement that propagators be run in topolog-
ical sort order greatly complicates the scheduler in FrTime, especially because

10We could perhaps fake it with partial information structures that stored the “height” of a particular cell
in a particular network, but we will attack this differently in the present exposition.

11Unless it knows better: we can build accumulators like the output of an integral propagator by judiciously
violating this rule, to wit letting the integral propagator absorb a dx input stamped with the current time
into an accumulated output stamped with an earlier time (and overwrite the latter with a result stamped
with the current time).
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the sort order may change as new propagators become relevant to the network
(for instance by conditionals changing which branch they take). This complexity
is a consequence of FrTime’s cells’ discarding historical information, and there-
fore being unable to explicitly know whether their values are stale or fresh; and
that, in turn, is a consequence of thinking of the cells as storing values rather
than accumulating information structures. ***

Can we do better? Yes, we can. One way is with a variation on the dependency tracking
of Chapter 4. Give each time-varying input an identity and use per-input timestamps.
That is, at each intermediate value, instead of just tracking a global timestamp, track
which inputs, read at which times, led to it. For example, the time input cell might contain
a partial information structure that says: “The value here is 17, because of the time input
read at time 17.” Then the cell for the value of the expression (+ 1 time) can contain a
structure that says “The value here is 18, because of the time input read at time 17.”

Now the rule is that a value is fresh if all the timestamps for all the inputs required for
that value are at their latest, regardless of whether other inputs have changed since. For
instance, after a clock tick, the + propagator will want to add “The value here is 19, because
of the time input read at time 18” to a cell that already has “18 because of time at 17”;
but “time at 18” proves that “time at 17” was stale, so the old 18 is forgotten and replaced
with the new 19.

As before, a propagator whose immediate inputs are supported by an inconsistent set of
user inputs should wait and do nothing, until the consequences of the update that caused
the inconsistency propagate all the way. So the < in our example might see “18 because
of time at 18” in one input and “18 because of time at 17” in the other input. Rather
than computing that 18 is not less than 18 and producing a glitch, it should notice that
one of its inputs promises that “time at 17” is stale, and so it should wait until the other
input becomes fresh. On the other hand, if the mouse hasn’t moved since time 2, then
“mouse-position at time 2” will still count as fresh, and a computation depending on both
the mouse-position and the time will be able to proceed, without having to wait for the
mouse-position timestamp to catch up to the time timestamp.12

So what do we have now? Now, if one input changes but another does not, we need only
update the new one, because the old one remains fresh even if we leave it alone. Therefore,
computations that only depended on the old input do not need to be redone—we have
achieved, at least to some degree, desideratum 1.

This approach to propagating reactive updates carries a different set of tradeoffs than
the approach taken in FrTime. On the one hand, there is potential for glitches: if two
inputs with different identities change at the same time, the consequences of one may reach
a place before the consequences of the other, and that propagator may produce a value that
depends on a set of inputs that never actually occurred in the real world. For example,
this might happen if we wanted to represent the position of the mouse as two separate
inputs mouse-x and mouse-y, rather than one compound input mouse-position: if the user
moved the mouse diagonally, the consequences of, say, the x-coordinate might reach some
propagator before the consequences of the y-coordinate. Then that propagator would be
perfectly content to produce some result that depended on “mouse-x at 42” and “mouse-y

12There are of course more details to think about. If values are supported by multiple inputs, it may be that
updates travel at different speeds and it turns out that two sets of supports prove each other stale (e.g., foo
is due to A at 2 and B at 1, but bar is due to A at 1 and B at 2). Perhaps an explicit stale marker is in
order? Also, how to merge values that are supported by different inputs at different times (like foo due to
A at 4 and bar due to B at 2)? Especially if they contradict each other? But these are questions of policy.
Which policy is good for what purpose, and how to intermingle them, is an avenue for future research; I
believe the basic strategy is sound.
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at 33”, which may represent a position where the mouse never went. The consequences
of “mouse-y at 42” would eventually catch up and overwrite, but the situation would still
constitute a glitch. This would look like moving on the diagonal by moving up first and
then across.

This kind of glitch can be avoided with coarser input identities: if both the inputs in the
above example are actually seen as aspects of the same input, and share an identity, then
instead of producing the glitch, that propagator would have waited for all the consequences
to reach it. But coarsening the premises costs more recomputation in principle: if one
aspect can change even though the other does not, the updated timestamp will still need
to be carried through to ensure consistency. For instance, if the user really did move the
mouse exactly vertically, then separating mouse-x from mouse-y might have saved us the
trouble of recomputing the consequences of mouse-x, such as a shadow from the pointer’s
position. Collapsing those into a single mouse-position forces us to update the timestamp
on that shadow even though it’s still the same. The extreme in this direction is to have all
inputs share the same identity—this corresponds to the original scheme of using just one
global timestamp. So here we have a tradeoff FrTime did not need to have: as we make
premises finer, separating inputs from each other, we recompute fewer things, but start to
risk more glitches in places where the consequences of different inputs converge.

We buy something for the price of this tradeoff, however: the basic propagation infras-
tructure did not have to be changed to suit our purpose, and therefore such a reactive
system can compose with other uses for propagation. For example, we could build a reac-
tive constraint solver: if there is some system of constraints with some time-varying inputs,
the propagation for updating those inputs will interoperate seamlessly with the propagation
for solving those constraints. Or we could build a reactive system with multiple read-write
views of the same data. Such a thing is hard to do normally because it is essentially multi-
directional, but it sits beautifully inside the essential multidirectionality of propagation.

For example, suppose we were trying to produce a color selection widget. It should of
course allow the user to select their colors either as red-green-blue or as hue-saturation-
value as they please, and ideally update both views to show the current selection. The
natural network to draw for this is in Figure 5-7; observe the converter circularity between
the RGB cell and the HSV cell. That circularity reflects the property we wanted, that
whichever input the user updates, the other will get modified accordingly. Unfortunately,
traditional functional reactive systems have a hard time with this: there is no one function
with distinct inputs and outputs that implements both conversions and picks which to do
based on the input. FrTime, for instance, would not like this, because the update graph
would not be acyclic.

The present propagation infrastructure, however, handles this RGB-HSV example seam-
lessly. If we just say that all six of the inputs share the same identity color, but ask the
GUI toolkit to update the timestamps for only the RGB or HSV triplet, rather than all six
of them, when the user moves one, we will achieve exactly the desired effect. If the user
moves an RGB slider at time 2, data supported by “color at time 2” will start on the RGB
side and propagate over to the HSV side, superseding all in its path. If the user then moves
an HSV slider at time 5, data supported by “color at time 5” will start at the HSV side,
and propagate over to the RGB side, proclaiming the staleness of the old RGB values and
superseding them in their turn.

Building reactive systems on top of a common propagation infrastructure can also have
another benefit. The “Reactive” part of Functional Reactive Programming messes horribly
with the flow of time. This confuses side-effects immensely, and, because people don’t want
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R-slider G-slider B-slider H-slider S-slider V-slider

HSV->RGB

RGB->HSV
RGB-color HSV-color

Figure 5-7: A network for a widget for RGB and HSV color selection. Traditional functional
reactive systems have qualms about the circularity, but general-purpose propagation handles
it automatically.

to think about that pain, the discipline is “Functional”.13 If, however, the ideas suggested
in Section 7.3 can lead to a decent general story for side-effects in propagator networks,
then perhaps reactive systems with a decent side-effect story can be built on top of those
principles.

Finally, functional reactive programming research can shed valuable light on how to
build general propagation systems that model time in the world; and in particular may
offer a coherent story about accepting input. *** TODO (Optional): Imperative
programming modeled time in the world by identifying it with time in the
computer. That proves excessively burdensome when the computer needs to
do things whose order does not have a natural correspondence with the world’s
time. Functional reactive programming offers a different way to model time
in the world, that in principle imposes fewer restrictions on the computer’s
internal behavior. It can therefore inform the enterprise of building a complete
propagation-based programming system, in the domain of modeling the world’s
time. In particular, *** This dissertation makes no mention of how a propagator network
should accept input from the outside world; the prototype presented here accepts input by
means of the user interacting with the Scheme read-eval-print loop in between runs of the
propagator network’s scheduler. Perhaps an I/O system such as those used to support
functional reactivity would be the right thing.

5.6 Rule-based Systems Have a Special Topology

A traditional rule based system [26] (or blackboard system, as they are sometimes called [19])
is also an instance of a propagation process. In this case, the blackboard, or the assertion
database, acts like a single cell, and each rule is a propagator that reads that cell and poten-

13With the addendum that drawing something on the screen is no longer a side effect, because after all, you
can redraw it later as a reaction to something else. But “real” side-effects, like sending packets over the
network, are not, in general, seamlessly integrated into functional reactive systems.
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Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 7

Assertion Database

assertion

assertion

assertion

...

Figure 5-8: A rule-based system viewed as a propagator network looks like a big cell with
a bunch of little propagators reading and writing it.

tially adds stuff to it. The network structure looks like Figure 5-8. The partial information
structure in this one cell is a big thing containing all the knowledge the rule system has
discovered so far. It has the interesting feature, unlike other partial information systems
discussed in this dissertation, that it not only can but is expected to grow without bounds,
collecting ever more information.

By this analogy, a more general propagator network is like a blackboard system with a
large number of blackboards that are segregated by topic, and each “rule” (i.e., propagator)
registers to observe only those blackboards that it is interested in, and presumably only
writes observations on a limited set of blackboards that are about things it can deduce
something about. This decomposition can improve the performance of such a system by
saving rules from having to search through large piles of assertions that predictably do not
concern them, and, in principle, by distributing reasoning about disparate topics across
processes or computers.

5.7 Type Inference Looks Like Propagation Too

*** TODO (Optional): Draw the reader in with why they should care about
type inference ***

*** TODO (Optional): Say what type inference is ***
Type inference can be formulated as generating and then solving constraints (on variables

that range over the possible types) [53]. These constraints can therefore be solved by a
propagation process. Since the constraints tend to be sparse, because they come from a
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Integer

. . . 1 . . .

Figure 5-9: A type in-
ference network frag-
ment for a constant

id

id

(λ (x) . . . x . . .)

Figure 5-10: A type inference network fragment
for a variable reference

substrate which has a topology and local features, propagation is a very natural way to
think about the process of solving them.

*** TODO (Optional): The code for actually doing this will be almost identi-
cal to the code for the plunking voltage divider, except that the equations will
be solved by unification rather than algebra over the reals. Do I want to point
that out? ***

Consider as the simplest example type inference over the simply-typed λ-calculus. Our
calculus has

• constants with known types, like #f, #t, 0, 1, . . . , "mumble", . . . 14

• variables, like f, g, x, y, . . .

• function applications like (f 8), and

• function definitions like (λ (x) (increment (double x))) (which bind variables).

We can write this type inference problem down as a propagator network as follows: Let there
be a cell for every variable binding and for every expression. This cell holds (everything we
know about) the type of that variable or the type of the object produced by that expression.
Then add propagators for every occurrence of every construct of the language:

• For every constant expression, add a propagator that writes the type of that constant
into the cell for that expression, per Figure 5-9.

• For every variable reference, add a pair of identity propagators between (the cell for
the return type of) that variable reference and (the cell for the type of) the binding
of that variable, per Figure 5-10. These identity propagators will copy everything we
know about either type into the other.15

14Which can be treated as variables with known fixed bindings, if one seeks uniformity.

15This causes some interesting limitations in the presence of higher-order functions. The technical term for
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get-input-type get-return-type

make-function-type

(λ (<param>) <body>)

Figure 5-11: A type inference network fragment for a function definition

• For every function abstraction, add a propagator triplet that enforces the function
definition rules, per Figure 5-11:

– One writes (everything we know about) the argument type of the function into
(the cell for) the type of the variable being bound;

– One writes (everything we know about) the type of the function return into (the
cell for) the type of the function’s body; and

– One writes the function type derived from (everything we know about) the type
of the bound argument and the type of the function body into (the cell for) the
type of the function being abstracted.

If this looks like a cons, car, cdr triplet, that’s not an accident.

• Finally, for every function application, add a propagator triplet (much like the previ-
ous one) that enforces the function application rules, per Figure 5-12:

– One writes (everything we know about) the argument type of the function into
(the cell for) the return type of the argument expression;

– One writes (everything we know about) the return type of the function into (the
cell for) the return type of the application; and

– One writes the function type derived from (everything we know about) the type
of the argument and the type of the return into (the cell for) the type of the
function being applied.

For the simply-typed λ-calculus, equipping the cells with a simple partial information struc-
ture suffices. Specifically, each cell can hold either nothing, meaning that we don’t know

these limitations is that this type system is monomorphic. The literature has much to say about lifting
them, but they are not worth thinking about for this example.
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get-input-typeget-return-type

make-function-type

(<func> <arg>)

Figure 5-12: A type inference network fragment for a function application

make-function-type

get-return-typeget-input-type

get-return-typeget-input-type

make-function-type

get-return-typeget-input-type

make-function-type

Integer->Integer

Integer->Integer

(λ (x) (increment (double x)))

id

Figure 5-13: A complete sample type inference network

the type that goes there yet, or a primitive type like Integer or Boolean, or a compound
function type like Integer -> Boolean or Integer -> nothing (the latter meaning that the
function takes an integer but we don’t yet know what it returns). To get it right, function
types have to be treated like compounds per Section 6.3, and therefore merged by structural
recursion. *** TODO (Optional): This itself isn’t unification, is it? ***

Such a machine will be able to perform simple type inferences without any further elabo-
ration. For example, a network constructed to infer the type of (λ (x) (increment (double
x))) is shown in Figure 5-13 (assuming increment and double are both known to be func-
tions from integers to integers). The progress of inference in that network is shown in
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make-function-type

get-return-typeget-input-type

get-return-typeget-input-type

make-function-type

get-return-typeget-input-type

make-function-type

Integer->Integer

Integer->Integer

(λ (x) (increment (double x)))

id

I->I

I->I

Figure 5-14: First, the known types of constants are filled in.

make-function-type

get-return-typeget-input-type

get-return-typeget-input-type

make-function-type

get-return-typeget-input-type

make-function-type

Integer->Integer

Integer->Integer

(λ (x) (increment (double x)))

id

I->I

I->I

Int Int Int

Figure 5-15: Then, the types of several expressions can be deduced from the types of the
functions that produce or consume them.
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make-function-type

get-return-typeget-input-type

get-return-typeget-input-type

make-function-type

get-return-typeget-input-type

make-function-type

Integer->Integer

Integer->Integer

(λ (x) (increment (double x)))

id

I->I

I->I

Int Int IntInt

Figure 5-16: The type of the parameter in inferred from how that parameter is used.

make-function-type

get-return-typeget-input-type

get-return-typeget-input-type

make-function-type

get-return-typeget-input-type

make-function-type

Integer->Integer

Integer->Integer

(λ (x) (increment (double x)))

id

I->I

I->I

Int Int IntInt

I->I

Figure 5-17: And the type of the overall term can finally be deduced from its definition.
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Figures 5-14 through 5-17.
More elaborate examples will of course require more elaborate structures. For example,

typing the identity function will need structures that can maintain type variables, and
propagators that can hypothesize them when needed, and push them around to see what
consequences they have.

Some standard descriptions of type inference cast it as a matter of producing a bunch of
type equations first and then solving them all in one fell swoop, using a black-box constraint
solver. However, as can be seen from this example, the equations are very local, and
therefore sparse. Using sparse equations to define a propagator network like this helps
emphasize their sparseness, and clarify the way information flows through them during the
process of solution. One possible benefit of seeing this flow of information is that it is natural
to think about layering, say, provenance information onto the objects the network passes
around. Such provenance decorations can then be used to inspect the final solutions to the
equations, and indicate, for example, which places in a program led to the type deductions
the system made. In particular, such a mechanism may be helpful for generating good error
messages for type inference systems.

Type inference is only one of the things compilers do that can look like propagation.
Flow analysis comes to mind as also having the character of being able to gather information
about what can happen to an object, and which objects might flow to a place, from multiple
sources within the program being analyzed. *** TODO (Optional): Look this up more
carefully; draw or implement it? *** Polyvariant flow analysis, in particular, needs to
be able to dynamically add new cells (contexts, in their terminology) as it goes, because the
number of different places a function might flow to, and therefore the number of different
cells needed for information about what might flow into its input, is only discovered as the
analysis progresses.

*** TODO (Optional): Of course, not all systems of even sparse equations
can reliably be solved by propagation alone. Sometimes the systems really have
larger-scale dependencies, which show up as loops in the network structure (c.f.
example above that requires a plunk). These larger scale equations can be
discovered by propagating a symbolic variable around the network, and seeing
where it meets itself.16

Having to solve systems of dense symbolic equations is inescapable in general,
but propagation can drastically reduce the number of equations that must be
solved simultaneously. In particular, propagation over a dynamically growable
network can be used to solve the relevant portion of a theoretically infinite set
of simultaneous equations,*** TODO (Optional): Hm! Can I come up with an
example of that? In the type inference or electric circuit world? Maybe flow
analysis? *** which might perhaps be impossible to solve by first writing all
the equations out and then solving them all as a simultaneous system. ***

*** TODO (Optional):

5.8 Dataflow Programming Fits In

*** TODO (Optional): Do I really want this section? Is this the right place in

16This requires a reliable way to generate unique variables, which is to say a means of giving things identities.
That is a nontrivial problem in distributed systems, but at least everything else about this strategy is
completely local. Furthermore, the identities don’t have to be completely global: they need only be unique
within the travel distance of the objects they identify — two variables that will never meet need not have
distinguishable identities.
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the sequence for it? What am I really trying to say here, anyway? ***
*** TODO (Optional): Is this an accurate representation of the discipline?

***
Dataflow programming differs from the present work because it presumes the

network to be more expensive than the data. The idea there is you make one
network and then push lots and lots of data through it over time. For instance,
you might turn a dataflow program into a sensor network with physical devices
gathering data and transmitting it over short distances to small processing
devices, and it could eventually reach some big computer in an already partially
processed form. [?]. Physical objects—there’s an expensive network!

This dissertation, in contrast, presumes that the network is not particularly
more expensive than the data. After all, if you’re writing code for some giant
CPU, and the propagator network is the organizing vision of your programming
language, propagators and data are all just bits, and the propagators have no
reason to be particularly more bits than the data. So from my perspective,
propagator networks are actually single-use by default (like the temperature
converter in Section 3.1). There are of course ways to reuse them, but they
vary: one can push interesting data through them that always leaves open an
option to refine, like the TMSes in Section 4.2; or one can reuse not the network
itself but the blueprint, and make another network, like in Section 6.2.2.

I do not lose any generality by making my networks single-use by default.
Instead, I gain generality by not committing to any particular reuse mechanism
at the infrastructural level. The generality may come at the cost of some per-
formance overhead, of course, but the aim of this dissertation has always been
expressiveness first and performance second. ***
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Chapter 6

Towards a Programming Language

In the preceding chapters, we have considered propagation as a model of computation. We
built a basic propagation system in Chapter 3, illustrated its flexibility by implementing
dependency tracing and good backtracking in Chapter 4, and discussed how it unifies and
generalizes related models of computation in Chapter 5. It is now time to explore several
hitherto unaddressed issues that arise in trying to build a complete programming system
(programming language or virtual machine, if you will) based on the propagation model.

6.1 Conditionals Just Work

Every programming system has some notion of a conditional, and propagation is no excep-
tion. The basic conditional construct in propagator-land is the switch, drawn in Figure 6-1.
This propagator either passes its input to its output, if the signal on the control is true, or
not.

The switch propagator differs from the familiar if expression because the switch propa-
gates conditionally, whereas if evaluates conditionally. In particular, in a world of always-on
machines, the switch propagator has no effect on the propagators that compute its input,
whereas if does determine which of its branches is evaluated. This will have consequences
for how we arrange recursive propagator networks in Section 6.2.

The basic switch propagator for the all-or-nothing information type is easy enough to
implement:

(define switch
(function->propagator-constructor
(lambda (predicate consequent)

(if (nothing? predicate)
nothing
(if predicate consequent nothing)))))

outputinput

control

Figure 6-1: Conventional diagram of a switch
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4

#t:fred

4:fred

Figure 6-2: A switch should pass on the dependencies of its control.

or even

(define switch
(function->propagator-constructor
(handling-nothings
(lambda (predicate consequent)
(if predicate consequent nothing)))))

Note how the switch does not propagate its input if the control is unknown (i.e., nothing).
This is a consequence of interpreting nothing as an information state: if a switch knows
nothing about its control, it in particular knows nothing about the circumstances under
which its control might be true; therefore it can say nothing about its output.

The analysis of what switch must do if its control is nothing generalizes to other forms
of partial information. For instance, if the control of a switch is a justified #t, then the
switch’s output should depend on the justification of the control (as well as of the input); for
example as in Figure 6-2. Fortunately, the generic machinery constructed in Appendix A.5.1
does the right thing:1

(define switch
(function->propagator-constructor
(nary-unpacking
(lambda (predicate consequent)
(if predicate consequent nothing)))))

(define input (make-cell))
(define control (make-cell))
(define output (make-cell))
(switch control input output)

(add-content input 4)
(add-content control (supported #t ’(fred)))
(content output)
#(supported 4 (fred))

A more direct analogue of the usual if would have two inputs, corresponding to the two

1This is not an accident; in fact, getting switch and car right was the main motivation for writing that
code that way. Appendix A.5 describes how it was done and why it is interesting, but suffice it to say here
that a single uniform treatment of partial information types does what we want for +, switch and car. ***
TODO (Optional): Is the duplicate footnote (cf compound-data.tex) really ok? ***
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control

true

false

output

Figure 6-3: A conditional made out of switches

control

output

true

false

Figure 6-4: Conventional diagram of a conditional

arms of the if. We do not need such an object as a primitive propagator, because it is easy
enough to assemble out of switches (and a logical inverter):

(define (conditional p if-true if-false output)
(let ((not-p (make-cell)))

(inverter p not-p)
(switch p if-true output)
(switch not-p if-false output)))

This wiring diagram looks like Figure 6-3. This compound is common enough to have a
picture of its own, in Figure 6-4.

Among propagators, a conditional with two inputs and one output is no more special
than one with one input and two outputs, that routes that input to one or the other output
depending on the control. Such a machine, drawn like Figure 6-5, is also easy to build out
of switches. Indeed, the code is dual, and the wiring diagram, in Figure 6-6, is symmetric.
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truecontrol

input

false

Figure 6-5: Conventional diagram of a conditional-writer

control

true

false

input

Figure 6-6: A conditional-writer made out of switches. Note the symmetry with the
conditional in Figure 6-3.

(define (conditional-writer p input if-true if-false)
(let ((not-p (make-cell)))

(inverter p not-p)
(switch p input if-true)
(switch not-p input if-false)))

The beautiful symmetry of this conditional with the other, together with the fact that
switch is a special case of each, forms strong evidence that switch is the right primitive
propagator for conditional propagation.

To one steeped in the ways of Scheme, where if is a magical creature that must be
treated with the greatest care, it was quite a surprise that switch was a better primitive
than the two-armed conditional, and that its implementation was just a function (even
one that was ok to wrap in nary-unpacking!)

One of the reasons this implementation of conditional works is that when the output cell
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merges the value that comes in from the selected branch with the nothing that comes in from
the unselected branch, the value always wins. So while the switch propagators conditionally
turn one or the other incoming value into nothing, the job of actually converting the two
answers from the two branches into one is done by the merge that happens in the output
cell. In effect, one of the things that was a little magic about if in expression languages
comes out of the fact that there already is an if inside every cell’s merge.

You may be wondering by now how in the world we are going to do recursion if all our
propagators, including switch, aggressively run their computations whenever they can. The
glib answer is: by denying them inputs, so they can’t. The careful description awaits in
Section 6.2, but the effect is that we will make the abstraction mechanism itself responsible
for deciding whether to actually expand a recursive call, instead of relying on a magical
property of a surrounding expression. Like relying on an if buried inside the cell’s merge,
this relies on an if buried inside the abstraction mechanism; the magic that used to be
associated with if has moved.

6.2 There are Many Possible Means of Abstraction

Every language must have primitives, means of combination, and means of abstraction.
The primitives in the propagator network are cells and primitive propagators. The means
of combination is wiring them together into larger propagator networks. What are the
means of abstraction?

The job of an abstraction mechanism is to package up a propagator network and give it
a name, so that it may be treated as a primitive to build larger combinations that aren’t
interested in its internal structure. How can this job be done?

6.2.1 Compound Blueprints

One means of abstraction is inherited directly from the host Scheme. The primitive prop-
agators are represented as Scheme procedures that act as blueprints: call it on a collection
of neighbor cells, and it will attach a copy of the appropriate propagator to those cells,
and schedule it. One can therefore abstract the blueprints: write Scheme procedures that
construct entire subnetworks rather than just individual primitives. For example, we built
sum constraints out of primitive adders and subtractors thus:

(define (sum a b total)
(adder a b total) ; a + b -> total
(subtractor total a b) ; total - a -> b
(subtractor total b a)) ; total - b -> a

From the perspective of the network, this acts like a macro system because the compound
blueprints are expanded when the network is constructed, and in particular before the
scheduler runs.

One advantage of abstraction by compound blueprints is that since it is inherited from the
host Scheme, no work needs to be done to implement this abstraction mechanism. Perhaps
more importantly for the author of a document, no work needs to be done to introduce it
to the reader—in fact, I have been using it freely in this dissertation so far without, I hope,
generating any confusion.

Abstraction by compound blueprints also enjoys all the advantages of a macro system.
In particular, it introduces no runtime overhead, because all such abstractions are gone by
the time the network is started. Moreover, if there is any computation that can be done
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in a compound blueprint rather than in the network itself, it is of course done before the
network’s runtime as well.

Being a macro system is a sword with two edges, though. Since compound blueprints
are fully expanded before the network is run, they have no access to the data that the net-
work actually computes. As a consequence, this abstraction mechanism does not suffice to
implement, for example, recursion: That requires a notionally infinite propagator network,
whose structure is elaborated only as the computation being done actually needs it, but
compound blueprints have no way to know what will be actually needed and what will not.

6.2.2 Delayed Blueprints

If one wants to implement recursion with some abstraction mechanism like compound
blueprints, but is stymied by the fact that they will fully expand before the network is
run, the natural thing to do is to delay them. In other words, define a propagator that,
when run, will expand some compound blueprint. That compound blueprint can then pre-
sumably refer to more such propagators that delay more compound blueprints, but those
will not be expanded until the computation needs them. One way to do this is as follows:

(define (compound-propagator neighbors to-build)
(let ((done? #f) (neighbors (listify neighbors)))

(define (test)
(if done?

’ok
(if (every nothing? (map content neighbors))

’ok
(begin (set! done? #t)

(to-build)))))
(propagator neighbors test)))

This code presumes that the blueprint (here to-build) is already closed over the appropriate
cells, and can therefore be called with no arguments. It also presumes that an abstraction
will not do anything interesting if all of its neighbor cells contain nothing; we will consider
how wise a presumption that is in Section 6.2.5.

The delayed blueprint approach makes the shape of the network reflect the shape of the
execution of a program: every time an abstraction is invoked, a copy of its network structure
is constructed at the invocation site. Since the invocation site is constructed afresh every
time the abstraction containing it is invoked, these constructed copies are not reused for
later invocations (but the blueprint that generated them is).

One advantage of this strategy is that the contents of individual cells don’t need to
know that they are participating in an abstraction: cells can continue to contain whatever
style of partial information they would contain if the network in question were built by
hand. Another advantage is that propagators that build propagators are almost certainly
a very useful concept anyway,2 so perhaps doing abstraction this way does not require any
additional machinery.

One consequence of this strategy is that, since the to-build procedure gets called during
the execution of the network, it can examine the contents of its neighbor cells when deciding
what propagator network to build. This creates a potentially thorny problem, because if the
interior of an abstraction can depend upon information that is only partial, then it seems
that one must have a notion of partial information about the resulting network structure.

2Though we have not yet found any other use for them. . .
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done?

base case

recursive case

Figure 6-7: A template for simple recursive functions. If the done? test passes, the recursive
call gets no input and remains unexpanded.

Indeed, the structure of the network (and the contents of the scheduler’s queue) is a separate
repository of state from the cells. The main thesis of this dissertation is that we derive
great advantage from making the information stored in cells conceptually partial, and from
giving the user control of the knowledge representation used. It then stands to reason that
making the information contained in the network’s connections and in the scheduler’s queue
partial as well would likewise yield advantage. Propagators that build propagators based
on information stored in cells are a direct way that information stored in these two domains
interacts, bringing the issue of partialness of network connections to a head. Unfortunately,
we have no good story about partial information about network structure. On the other
hand, this problem can be avoided by imposing on to-build procedures the discipline that
they not examine the contents of the cells they are linking to.

A disadvantage of abstraction by delayed blueprints is that reclaiming the storage used
to compute the return values of functions becomes an exercise in deducing what portions
of a network have done everything they were going to do, and manipulating the network
structure to remove them. This is harder with propagators than with expressions because
even if a compound has produced something in some “output”, one must wait until all
the propagators internal to it have quiesced to know that it will not produce any more.
Quiescence is scary because it is an emergent property of an entire (piece of) network,
rather than something easily observable in any one place. Further, to actually completely
remove an expanded compound, one needs to know that one will never wish to submit
refinements to it (or if one does, that one is willing to call it again from scratch). Trying to
get all this right is daunting, especially if it involves directly mutating network structure.

6.2.3 Recursion with Delayed Blueprints

The delayed blueprints strategy for abstraction suffices to build recursive networks. The
technique might be called input starvation. Consider Figure 6-7. We install a switch to
control the input to the recursive call. Compound-propagator is written so that if all the
inputs to an abstraction are nothing, we do not recur into the abstraction, but merely
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assume that it does nothing. We will examine this choice more carefully in Section 6.2.5,
but for now let us work out a concrete example of doing recursion like this, and verify that
it works.

For our example recursive network, let us consider the problem of computing square roots
by Heron’s method [27]. The idea is that given a number x whose square root we want to
find, we can improve any guess g of that square root by the formula g′ = (g+x/g)/2. We can
start by building a little network that abstracts that formula; for purposes of illustration,
we use compound-propagator to make it a delayed blueprint, even though, since it is not
recursive, it could have been a non-delayed blueprint (which would have been a bit like
making it a macro instead of a procedure in a normal programming language).

(define (heron-step x g h)
(compound-propagator (list x g) ;inputs

(lambda () ;how to build
(let ((x/g (make-cell))

(g+x/g (make-cell))
(two (make-cell)))

(divider x g x/g)
(adder g x/g g+x/g)
((constant 2) two)
(divider g+x/g two h)))))

We can test this out, and notice that the abstraction works as desired;

(define x (make-cell))
(define guess (make-cell))
(define better-guess (make-cell))

(heron-step x guess better-guess)

(add-content x 2)
(add-content guess 1.4)
(content better-guess)
1.4142857142857141

and even produces a decent answer.
To complete our square root network, we will use three more abstractions. The interesting

one repeatedly uses the heron-step subnetwork to make a guess better and better until an
appropriate test is satisfied.

(define (sqrt-iter x g answer)
(compound-propagator (list x g)

(lambda ()
(let ((done (make-cell))

(x-if-not-done (make-cell))
(g-if-done (make-cell))
(g-if-not-done (make-cell))
(new-g (make-cell))
(recursive-answer (make-cell)))

(good-enuf? x g done)
(conditional-writer done x (make-cell) x-if-not-done)
(conditional-writer done g g-if-done g-if-not-done)
(heron-step x-if-not-done g-if-not-done new-g)
(sqrt-iter x-if-not-done new-g recursive-answer)
(conditional done g-if-done recursive-answer answer)))))
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sqrt-iter

sqrt-iterheron-step

good-enuf?

x

g

x-if-not-done

done

g-if-done

Figure 6-8: The recursive sqrt-iter network

This is drawn in Figure 6-8; as you can see, it uses switches to prevent the recursive call
if the good-enuf? test is satisfied; as such it is an instance of the simple pattern shown in
Figure 6-7. This works because a compound-propagator only builds its body when presented
with non-nothing values in the cells declared as its inputs, whereas switches always write
nothings if their control inputs are false. This makes an interesting contrast with recursion
in expression languages, where if notionally lives on the outputs of expressions, and controls
whether those expressions are evaluated by suppressing interest in those outputs. ***
TODO (Optional): Mention requests? ***

To actually try this out, we need two more abstractions, the actual sqrt-network that
supplies an initial guess (in this case 1.)

(define (sqrt-network x answer)
(compound-propagator x

(lambda ()
(let ((one (make-cell)))

((constant 1.) one)
(sqrt-iter x one answer)))))

and the good-enuf? test

(define (good-enuf? x g done)
(compound-propagator (list x g)

(lambda ()
(let ((g^2 (make-cell))

(eps (make-cell))
(x-g^2 (make-cell))
(ax-g^2 (make-cell)))

((constant .00000001) eps)
(multiplier g g g^2)
(subtractor x g^2 x-g^2)
(absolute-value x-g^2 ax-g^2)
(<? ax-g^2 eps done)))))

With this program we now get a rather nice value for the square root of 2 (even though
this end test is not a good one from the numerical analyst’s perspective).
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(define x (make-cell))
(define answer (make-cell))

(sqrt-network x answer)

(add-content x 2)
(content answer)
1.4142135623746899

6.2.4 Abstraction by Virtual Copies

A third way to do abstraction in a propagator network is in effect to use delayed blueprints,
but to create “virtual” rather “physical” copies of the network the blueprint describes. ***
TODO (Optional): Comment that this is separation of invocations in a “logical”
space rather than the “physical” space of the network structure? *** This can be
accomplished by introducing a data structure into cells that maps a token representing the
identity of a virtual copy to the value (actually partial knowledge) in that cell in that virtual
copy. *** TODO (Optional): Draw a picture of this ***. Abstraction by virtual
copies makes the shape of the propagator network reflect the shape of the source code of
a program rather than the shape of its execution: the propagators actually constructed
correspond to bits of code, whereas the shape of the execution is tracked by the collection
of virtual copies that exist: for any particular token, the set of mappings of that token in all
cells corresponds to one frame of a Scheme lexical environment. In order to build closures,
I expect to need a notion of “parent token” for the tokens.

In order to actually implement virtual copies, it is also necessary to insert a translation
object at each call site that will create new virtual copies as they are needed, attach the
appropriate token to “procedure arguments” when transmitting them into the abstraction,
and detach it when transmitting “return values” out of it. In particular, this translation
object must maintain a mapping between the virtual copies of the “caller” and those of the
“callee”, so that each “call” can take inputs from and produce outputs to the correct virtual
copy. Such a mapping is a generalization of the “previous frame” concept in a stack.

One disadvantage of abstraction by virtual copies is that it requires additional machinery
not present in the base propagator system, namely the token-value mappings and the trans-
lation objects. This is not so bad, however, because the propagator infrastructure is flexible
enough that this machinery can be added in user space: the token-value mappings are yet
another kind of partial information, and the translators are yet another kind of propagator.
No fundamental design changes are required.

One advantage of virtual copies is that removing functions that have finished might be
easier. Of course, one must still detect this condition, with all the attendant problems
of internal quiescence and external promises of non-refinement, but if one has, there is
no need to explicitly manipulate the link structure of the propagator network because
the intermediate virtual copy that is known to be finished can just be unlinked from the
caller-callee mapping.34 This corresponds to removing a stack frame from the stack after it
returns, or garbage-collecting an environment that was used for an evaluation that returned

3Presumably, if the token keying a virtual copy does not appear as the target of any caller mapping, the
garbage collector can reclaim it. Presumably, the garbage collector can also reclaim all the entries in all the
copy-value tables that are keyed by a token that has become inaccessible.

4There may be forms of partial information that inherently break returns by insisting on tracking the whole
history of a computation. In this case, the “finished” frames never become irrelevant, perhaps because they
can be revisited. That problem is separate from the ability to implement abstractions at all.
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(and wasn’t captured by a closure).
The virtual copy data structure is a special case of a truth maintenance system, with a

particular pattern of premises. Specifically the premises are of the form “I am operating
in virtual copy X.” No two such premises are presumably ever believed at once, and they
presumably have predictable patterns of times when they will never be believed again. Both
of these assumptions may suggest more efficient implementations of virtual copies than with
general-purpose TMSes, but in principle these two structures are very similar.

Since abstraction by virtual copies requires more machinery than the other abstraction
techniques, some questions about virtual copies remain open:

First, the preceding discussion of virtual copies ignores the famous “funarg problem”. In
thinking of the token to value maps as just flat maps, one may be shooting oneself in the foot
with respect to implementing closures. These mappings may need to be somewhat more
elaborate environment structures. Also, what do “free variables” mean in this context?

Second, the binary-amb propagator interacts very strangely with virtual copies. The
problem is that each binary-amb has an identity that is visible in the true and false premises
that it creates. As a consequence, each instance of a blueprint that calls for a binary-amb
had better contain its own binary-amb, but since the virtual copy mechanism described so
far only copies the contents of the cells, everything breaks. Especially since binary-amb has
no input cells it can examine to determine that it is in a virtual copy (or, for that matter,
which virtual copy it’s in), some additional mechanism seems necessary to make the two
interoperate. What should that mechanism be? *** TODO (Optional): There was the
idea to make binary-amb take its premises as inputs, and just statelessly choose
between them. But then the cells containing them still need to magically know
which virtual copy they are in. ***

6.2.5 Opening Abstractions

An abstraction is a named piece of network that is manipulated by reference to its name
alone. In particular, recursion works because the name of the recursive call suffices until we
need to invoke it, and it is not necessary to explicitly represent the fact that that recursive
call may have a recursive call of its own, and that deeper one may have one deeper yet,
and so forth. In order to execute an abstraction, however, it is necessary to dereference its
name, and construct, in whatever way the abstraction mechanism specifies, a representation
of that use of that abstraction. In previous sections we were concerned with how that might
be done; here let us turn our attention to questions of when to do it.

Recall the compound-propagator procedure from Section 6.2.2:

(define (compound-propagator neighbors to-build)
(let ((done? #f) (neighbors (listify neighbors)))

(define (test)
(if done?

’ok
(if (every nothing? (map content neighbors))

’ok
(begin (set! done? #t)

(to-build)))))
(propagator neighbors test)))

Here the abstraction is opened (by calling the to-build procedure) as soon as any of its
inputs is not nothing5 (and the act of opening is memoized to avoid building the innards

5Inputless compound propagators are strange. As written, this will never open any of them. The obvious
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repeatedly).
This strategy is the most eager possible opening of abstractions. The only way to be

more eager is to open all abstractions unconditionally, but then recursive networks would
be impossible because there would be no way to keep an unneeded abstraction (like the
recursive call one doesn’t make) closed. This strategy is similar in a sense to normal order
evaluation: in normal order an abstraction is opened as soon as its output is demanded,
which demand *** TODO (Optional): Refer to requests? *** is always the first
thing to show up at the abstraction boundary. Here, the abstraction is opened as soon as
anything arrives at the boundary.

One might wonder what applicative order may be like. Consider the entire argument
list as a single entity: The eager strategy opens the abstraction as soon as anything is
known about any component of it. Applicative order, however, corresponds to waiting until
everything is known about the argument list before opening the abstraction. But in network
land, that means waiting until everything is known about all the arguments.

That strategy is much too draconian for general partial information types. If one is
using a truth maintenance system, for example, one may know that some answer is 5
according to Brian, but one may never receive final confirmation that Brian is to be believed
unconditionally. Waiting for the rest of the network to quiesce, even if plausible, is also no
guarantee that no more information about an input is forthcoming, because if the network
has a cycle, some consequence of the abstraction itself may eventually refine one of its
inputs.

There is one situation where an analogue of applicative order for networks is workable, and
that is when the “partial” information structures are actually complete. If one has a five in a
cell, and that five means “This cell has a five and that’s final”, that can effectively be treated
as full information. In a region of network where all cells reliably carry such information, an
applicative order abstraction opening policy is possible. This case is important because it is
how networks mimic ordinary programming, and applicative order may prove useful in such
regions for the same reasons that it proves useful in ordinary programming languages. On
the other hand, in network regions with richer partial information structure, the question
of normal versus applicative order stops being a dichotomy, and a very wide variety of
abstraction opening policies become possible.

The decision of how much knowledge to insist on before opening an abstraction can be
left to user space. If the network’s general policy is to open abstractions as soon as anything
is known about their argument lists, taken as whole entities, one can always put a filtering
propagator on the front of any particular abstraction that will wait until its input contains
enough knowledge to satisfy it that the abstraction is worth opening, and only then pass
that knowledge along; so that even though things may accumulate before it is ready, the
abstraction behind it will see only nothing until the filter is satisfied. (In general, such
filters can be placed on a per-call-site basis, but of course one can abstract the combination
of a particular such filter on top of a particular abstraction, and thus mimic the discipline
of putting the filters on the abstractions themselves.) This corresponds quite directly to
strictness annotations on procedures (or call sites!) in an otherwise lazy language, except
that rather than a binary choice of “strict” or “not strict” in each argument, one actually

modification to this that always opens inputless compounds will open them even if their outputs are not
needed; this can cause trouble should one build a recursive inputless compound propagator. The essence of
the problem is that if one has no inputs, knowing nothing about them is the same as knowing everything
about them. Regular programming languages avoid this problem, because computations are not attempted
until they are needed; in effect, computations have an extra input which indicates whether the computation
is desired or not, and consequently there are no truly inputless computations.
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5:Fred

6:Bill

?cons

Figure 6-9: Consing two TMSes

has access to a continuum of abilities to insist on various amounts of knowledge about
various arguments (and even their totality taken as one). One might therefore imagine
an extension of the idea of strictness analysis to autogenerate such filters for abstractions
that may benefit from them. It is also intriguing that such filters seem very similar to the
deciders suggested in Section 7.3 for general side effects. Perhaps choosing to dedicate the
resources to the representation of an abstraction invocation is sufficiently observable and
irreversible to constitute a side effect of sorts?

6.3 What Partial Information to keep about Compound Data?

*** TODO (Optional): The Prolog world has a story about this (in their own
context) ***

Compound data structures like Lisp’s cons cells are key to the utility of a programming
system. It turns out compound data differs enough from primitive data (like numbers6)
that its treatment in a propagation context is worth examining as such.

Consider a pair, as made by cons. Suppose we are using a TMS, like in Section 4.2, for our
partial information (over primitives), and are trying to cons up two objects: (cons x y).
So x is a cell, and suppose it contains a TMS that says “5 if you believe Fred”; y is a cell, and
suppose it contains a TMS that says “6 if you believe Bill”; and cons is a propagator that
needs to produce something to put into the cell attached to the output of that expression.
See Figure 6-9. What should it put there?

The naive thing to do is to treat cons the same way we treat + (if you’ll recall the
treatment of + from Section 3.4),

6It is ironic that numbers are the standard example of a primitive data type, as one might argue that
numbers are perhaps the richest and most complex domain that programming languages must routinely
deal with. Perhaps calling them primitive is just a way to hide that richness and complexity behind a wall
called “primitive arithmetic” and avoid having to think about it.

103



(define generic-cons (make-generic-operator 2 ’cons cons))
(define conser (function->propagator-constructor (nary-unpacking generic-cons)))

that is to unwrap the input TMSes, run the primitive cons, and wrap the result in an
appropriate output TMS. This produces a TMS that says “(5 . 6) if you believe Fred and
Bill:”

(define x (make-cell))
(add-content x (make-tms (supported 5 ’(fred))))
(define y (make-cell))
(add-content y (make-tms (supported 6 ’(bill))))
(define out (make-cell))
(conser x y out)
(content out)
#(tms (#(supported (5 . 6) (bill fred))))

While this is certainly consistent, it is dissatisfying, because when we then take the car
of the resulting object in the same style,

(define generic-car (make-generic-operator 1 ’car car))
(define carer (function->propagator-constructor (nary-unpacking generic-car)))

we get “5 if you believe Fred and Bill:”

(define x-again (make-cell))
(carer out x-again)
(content x-again)
#(tms (#(supported 5 (bill fred))))

We have violated the identity that (car (cons x y)) should be x regardless of y. The
violation is conservative, in that we have not forgotten any dependencies we should have
remembered, but we have manufactured dependencies that weren’t originally present. In
effect, the consing has forgotten which of its dependencies came from the first part and
which from the second, and so gave us all of them.

This is a serious defect in the dependency tracking system. Data aggregates are so
prevalent that being unable to separate the dependencies of the individual members of the
aggregate would limit the dependency tracker’s usefulness for anything big enough that one
can no longer assign a separate variable to each individual datum.

One might argue that this is a defect only in the dependency tracking system, and there-
fore does not illuminate the design of the propagation infrastructure. I would disagree with
such a one, on the grounds that the dependency tracking system is a very compelling exam-
ple of a partial information type, and illustrates a problem that other partial information
types may also encounter. I would suggest that it is worth considering how to design the
basic cons, car, and cdr propagators so as to make it convenient to process partial in-
formation types as elaborate as dependency tracking, especially since there turn out to be
different options, some of which do require support from the propagation infrastructure at a
very low level. So let us consider the general approaches to this problem, using dependency
tracking as our motivating example.

The essence of both proposed solutions is to keep track of the information we have about
each element of the pair separately; the difference being how to manage the separation.
For dependencies, that amounts to keeping separate truth maintenance systems for each
element of the pair. Before we go into that, though, it is worth noting that our information
about the pair itself may also be partial, entirely separately from any partialness to our
information about its parts. The easiest way to imagine that happening is to think of a pair
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we received through an if whose predicate we didn’t fully know. Suppose for example that
we have a predicate foo? that in our case will produce a TMS that says “#t if you believe
George and #f if you believe Carol”. Then

(if (foo?)
(cons 1 2)
(cons 3 4))

should produce a TMS that says “(1 . 2) if you believe George and (3 . 4) if you believe
Carol,” which is a partial information structure that describes which pair we have in our
hands. The “which pair” question is entirely separate from information about the contents
of those pairs. In this case, we had complete information about the contents of the pairs,
but it could have been partial too; and then we would need three partial information data
structures, one for each of the car and the cdr, and one more for the pair itself. *** TODO
(Optional): Show some code of this happening?? ***

6.3.1 Recursive partial information strategy

We have thought of two strategies for separating the partial information about the parts of
a data structure from each other and from the information about the data structure itself.
The first is to ask the data structure to contain partial information structures instead of
direct values. The cons propagator for that turns out to be really simple7:

(define conser (function->propagator-constructor cons))

Then if we are always certain about the pairs themselves, extraction need in principle only
pull out the partial information about the appropriate piece

(define carer (function->propagator-constructor car))

If, however, the information about the pair itself (the “which pair” question, from above)
happened to be partial, then the extractor needs to pull the pair out of that structure and
let the result inherit the uncertainties about the pair itself appropriately. It turns out that
the generic operation machinery built in Appendix A.5.1 handles that case correctly:8

(define carer (function->propagator-constructor (nary-unpacking car)))

A simple mechanism for merging pairs that show up in cells suggests itself: just recursively
merge the cars and the cdrs and recons them.

7The resulting pair had better be type tagged so that it cannot be confused with the beginning of a partial
information structure such as a TMS (over primitive values).

8This is not an accident; in fact, getting switch and car right was the main motivation for writing that
code that way. Appendix A.5 describes how it was done and why it is interesting, but suffice it to say here
that a single uniform treatment of partial information types does what we want for +, switch and car, even
though we did something different for cons.
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(define (pair-merge pair1 pair2)
(let ((car-answer (merge (car pair1) (car pair2)))

(cdr-answer (merge (cdr pair1) (cdr pair2))))
(cond ((and (eq? (car pair1) car-answer)

(eq? (cdr pair1) cdr-answer))
pair1)

((and (eq? (car pair2) car-answer)
(eq? (cdr pair2) cdr-answer))

pair2)
(else
(cons car-answer cdr-answer)))))

(defhandler merge pair-merge pair? pair?)

So let’s put it all together and see Spot run:

(define x (make-cell))
(define y (make-cell))
(define pair (make-cell))
(conser x y pair)

(content pair)
( #(*the-nothing*) . #(*the-nothing*) )

Note how conser aggressively manufactures pairs with empty contents—the fact that there
is supposed to be a pair there may be interesting to some client in itself, regardless of what
should be in it.

This machine also does the right thing about uncertainty about the pairs themselves:

(define control (make-cell))
(define switched-pair (make-cell))
(switch control pair switched-pair)

(add-content control (make-tms (supported #t ’(joe))))
(content switched-pair)
#(tms (#(supported ( #(*the-nothing*) . #(*the-nothing*) ) (joe))))

Since the switch is only on if we believe joe, whether there is a pair in the switch’s output
is also dependent on joe. So that’s an instance of a pair whose identity is not known for
sure, and which consequently resides inside a TMS.

(define x-again (make-cell))
(carer switched-pair x-again)

(content x-again)
#(*the-nothing*)

But if we try to take the car of this pair, we get nothing, because there’s nothing in the car
position of the pair yet. This situation looks like Figure 6-10. Now let’s see what happens
when we add something to the x that’s getting consed up:

(add-content x (make-tms (supported 4 ’(harry))))

Our addition gets put into the pair in the pair cell,

(content pair)
( #(tms (#(supported 4 (harry)))) . #(*the-nothing*) )
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Figure 6-10: A propagator network with a cons and a switch
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Figure 6-11: A propagator network with a cons, a switch, and some data

whence it travels to the conditional pair in the switched-pair cell,

(content switched-pair)
#(tms (#(supported ( #(tms (#(supported 4 (harry)))) . #(*the-nothing*) )

(joe))))

so that our carer propagator can extract it, appropriately tracking the fact that it now
depends on joe as well as harry.

(content x-again)
#(tms (#(supported 4 (harry joe))))

This situation looks like Figure 6-11. Note that we managed to get a useful result out of
this computation even though we never supplied anything in the y cell, that was supposed
to go into the cdr position of our pair. This looks like a lazy language with a non-strict
primitive cons. As remarked in Section 6.2.5, this is in keeping with our general philosophy
of aggressively running propagators whenever possible. *** TODO (Optional): What
about abstracting a cons, instead of open-coding it? There is an example of an
abstraction that does do something interesting even if its inputs are all nothing.
***

This strategy recovers the nice feature that the inverse of a cons is an appropriate pair
of a car and cdr, and the inverse of a lone car or cdr is a cons with an empty cell for the
missing argument.

While the code presented sufficed for the example in the text, the recursive partial in-
formation strategy is not yet fully worked out. If one runs the given code as written, one
will discover an unfortunate bug, which is that a TMS inside the car of a pair that is itself
inside of a TMS is not properly aware of the dependencies it inherits from its container. In

107



particular, if the interior TMS detects a contradiction, as when merging (4:fred . ):george
with (3:bill . ):joe, it will signal it without proper accounting for its context (that is, it
will signal that Fred and Bill contradict each other, without noticing that all four of Fred,
George, Bill, and Joe are actually needed to cause a contradiction).

Another, perhaps related, problem is that the code as written is not precise enough about
tracking the dependencies of the fact that some cell in fact contains a pair. For example,
when merging (4:fred . ):george with ( . 3:bill), one should observe that the result is a
pair unconditionally; that its cdr is 3 only depends on Bill; and that its car is 4 depends
on Fred and George. In other words, the right merge is (4:fred,george . 3:bill). The code
presented produces (4:fred . 3:bill):george instead. This is at least conservative, but still
disappointing.

*** TODO (Optional): Gerry says: “This may be the best that can be done
without lots more analysis.” Do I want to make that comment here? ***

*** TODO (Optional): The dataflow people are worried about an entirely
different problem with datastructures, which is the cost of copying them from
cell to cell. Immutability (combined with good persistent data structures) solves
half of that problem; I can skirt the other half by saying that if there are
relatively many propagators on the same processor/core that can just share
the same memory, then the large cost of actually transmitting copies across a
network need not be paid very often. ***

6.3.2 Carrying cells strategy

The second strategy is to let pairs contain network cells directly. Then the cons propagator
operates not on the contents of its input cells, but on the input cells themselves. It can
package them up in the pair data structure and let the result flow along the network; then
when it comes time to extract, the car and cdr propagators can extract the appropriate
cell from the pair, and then further extract its content. The simplest incarnation of this in
code is indeed simple:

(define (conser a-cell d-cell output)
(propagator () ; That’s right, no inputs.

(lambda ()
(add-content output

(cons a-cell d-cell)))))

(define (carer cons-cell output)
(propagator (list cons-cell)

(lambda ()
(add-content output

(content (car (content cons-cell)))))))

This strategy has the advantage that if some partial information about some object con-
tained inside a pair gets refined, the update need not propagate through an entire long chain
of cells containing pairs, but can go straight through to the cell receiving the appropriate
component. On the other hand, this has the weird effect of having cells contain data struc-
tures that contain pointers to other cells, and that causes some problems. Philosophically,
there is the effect that the structure of the network is now even more dynamic, and that’s
scary. More practically, the carer given above actually needs to register either itself or
some other propagator to receive updates from the transported cell, perhaps thus:
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(define (carer cons-cell output)
(propagator (list cons-cell)

(lambda ()
(identity (car (content cons-cell)) output))))

(define (identity input output)
(propagator (list input)

(lambda ()
(add-content output (content input)))))

This addition of the identity propagators should be memoized, so that we do not end up
with a large number of the same propagators floating around. Further, if the incoming
pair is only known partially, the extraction of the transported cell will need to take care to
actually collect a pair to operate on; and the identity propagator will need to be somehow
conditional on the partial information about said incoming pair, and should of course merge
that partial information with the result it produces. For example, the case of TMSes,

(define (carer cons-cell output)
(propagator (list cons-cell)

(lambda ()
(let* ((best-pair (tms-query (content cons-cell)))

(transported-cell (car (v&s-value best-pair))))
((conditional-identity (v&s-support best-pair))
transported-cell output)))))

(define ((conditional-identity support) input output)
(propagator (list input)

(lambda ()
(if (all-premises-in? support)

(add-content output
(attach-support (tms-query (content input)) support))))))

(define (attach-support v&s more-support)
(supported
(v&s-value v&s)
(lset-union eq? (v&s-support v&s) support)))

Note that the conser propagator need not be changed, since it deals with cells and not
their contents; nonetheless, doing this uniformly across partial information types remains
an outstanding challenge. For example, the astute reader may have noticed that the code
above lacks necessary checks for the possibility of several things being nothing.

Another challenge also remains outstanding with this “carrying cells” strategy. It is not
at all clear how to merge two pairs, because doing that seems to require “merging” the
cells they carry. Perhaps it would be appropriate to keep all those cells, and interlink them
with (conditional) identity propagators? I also expect that all the problems attendant on
merging pairs represented with the recursive partial information strategy of Section 6.3.1
will resurface in one or another form here.

6.4 Scheduling can be Smarter

Most of the discussions in this dissertation have assumed that computation is essentially
free—per Section 2.1, every propagator is a notionally independent machine that tries its
computation all the time, presumably without costing anyone anything; per Section 6.2.2,
more of these propagators can be created at will; and per the rest of the dissertation they
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operate on arbitrarily complex partial information structures, and ask the cells to merge
arbitrarily complex additions of information. This is all good and well for the study of the
general properties of such propagation systems, and for the consideration of their expressive
power in the abstract, which of course is the main concern in the present work, but the
assumption of limitless computation will surely break down in practice. Let us therefore
take a moment to think on what the propagation infrastructure might be able to do to use
resources reasonably.

Indeed, the prototype presented in this dissertation is subject to resource limitations of
exactly the kind that it gleefully ignores. Since all my propagators are simulated on (a
single core of) a single computer, they compete with each other for CPU time—when one
propagator in one part of the network is running, others are not, even though perhaps they
could. What, then, can be done to make the best use of that limited CPU time? How well
can useless or redundant work be avoided?

Efficient resource allocation to propagators is an important issue we leave for future
work. Just one observation draws attention to itself: Our infrastructure is aware of the
partialness of the information it deals with, and it is clear that some partial information
structures contain strictly more information than others. Perhaps there may be a way to
measure the amount of information a particular partial structure contains. If in addition
it proves possible to predict the dependence between the new information that has become
available in a propagator’s inputs since its last run and the information it will produce for
its outputs if it is run again, it may then be good to schedule propagators by the general
philosophy “run the most informative first.”

Let me illustrate the idea with an example. Suppose we wanted to solve the single-source
shortest-paths problem [12] for some graph, by using a propagator network. We could
make a network with one cell for each node, one propagator for each directed edge, and a
partial information structure that stored an upper bound on how far each node was from
the source. Each propagator’s job would be to inform the head of its edge that it was no
further from the source than the distance of the tail of the edge plus the length of the edge.
Such a network in operation might look like Figure 6-12.

*** TODO (Optional): Code example of Dijkstra’s algorithm even with the
old scheduling? This code got hairy fast. . . ***

If we ran this shortest-paths network with the scheduler in Appendix A.2, it would
converge to the right answer eventually, but there’s no telling how many times it would
invoke each edge-propagator, deducing all manner of small improvements to the possible
paths. We could, however, say that every upper bound is as informative as it is small, and
that every propagator’s output will be informative in proportion to the informativeness of
its input. Then the propagators whose tail cells have the lowest upper bounds for paths
from the source are also the most informative propagators to run, and the priority queue of
propagators by informativeness will behave exactly like the standard priority queue of nodes
to expand in the usual shortest paths algorithm. We will have replicated the performance
of a hand-coded algorithm, up to constant factors, in a framework expressive enough to
deduce the control loop we wanted for us.

In addition to the elegance of the previous example, I deem this direction of research
encouraging because the scheduling policy outlined in Section 3.1 and used in this disser-
tation is actually a special case of the rule that uninformative propagators should be run
last. Specifically it can be interpreted as running informative propagators first using the
following simpleminded information metric: any propagator whose inputs have changed
since its last run is predicted to have informativeness 1, any whose have not 0, and the rest
of the world (i.e., returning from the simulation loop) 1/2. Thus all quiescent propagators
implicitly sort after the “end the simulation” pseudopropagator, and don’t need to be kept
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Figure 6-12: A network computing the shortest paths in a graph. It will converge to the
right answer eventually, but depending on the order in which it invokes the propagators, it
may invoke them many more times than needed.

on the queue at all; and all non-quiescent propagators sort before it in some haphazard
order, represented by the scheduler’s single (non-priority-)queue.

On the other hand, guessing the actual informativeness of running a propagator based
on the amount of information accumulated in its inputs is of course uncomputable in gen-
eral. The deciders suggested in Section 7.3 promise to be particularly practically troubling,
because by their very nature, their translation from their inputs to their outputs can either
suppress or greatly amplify changes in the inputs’ information content. Simple propagators
acting on simple information spaces can be predicted, however; there is much research in
the constraint satisfaction field on that particular topic, as well as on the topic of scheduling
propagators in general [47, 55].

*** TODO (Optional): Code example of sqrt-feedback? Sadly, raw interval
arithmetic loses. ***

As another example of the possible uses for scheduling propagators by informativeness,
consider computing estimated square roots with a feedback loop as in Figure 6-13 (as
opposed to the throttled recursion of Figure 6-8 on page 99). If the sqrt-x cell holds an
appropriate partial information structure, the feedback loop can continue refining the guess
indefinitely (or until it hits the limits of precision, if the arithmetic is inexact). On the other
hand, it is easy enough to predict that after a point successive refinements will be of limited
use, as they are only making a small error smaller. So at some point, whatever propagators
are reading that square root answer will gain higher priority than those continuing to refine
the guess, and will run. Then whatever propagators are reading those answers will gain
higher priority than the propagators continuing to refine the guess, and they will run—the
computation will proceed, in spite of containing a possibly infinite loop;9 and the question
of whether an answer is good enough can be left for the system itself to determine by its
informativeness measures rather than having to be hardcoded into the square root routine.

9This therefore amounts to a notion of fairness of resource allocation. If we presume, or engineer, that
propagators running in a limited area of the network will in time exhaust their relative informativeness,
then they are automatically prevented from hogging the system’s resources indefinitely.
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Figure 6-13: Square roots by feedback. In principle, this could refine its guess forever, but
it is possible to predict that further refinements are less and less useful.

*** TODO (Optional): Gerry says: “Should note that this is more like analog
computation, but with digital precision.” ***

This idea opens avenues of thought about weighing the possible benefit of new information
propagators might produce. One can envision mechanisms for the user to indicate their
interest in some or another item of information, and transitively the items from which it is
computed. One can perhaps also envision estimates of the cost of running some propagators,
and weighing that cost against the estimated benefit of the information they may produce.
This is highly reminiscent of various CSP work [55]; perhaps some of those techniques can
be adapted to general-purpose computation.

*** TODO (Optional): Requests can amount to bids for the value of desired
information? ***

6.5 Propagation Needs Better Garbage Collection

Garbage collection is an important technical issue that the present work has largely swept
under the rug. The prototype propagation system presented in this dissertation gives no
help to the underlying Scheme garbage collector. In fact, since propagators hold on to their
cells and cells hold on to their propagators, both strongly, entire networks, including all the
information they have deduced, remain in memory as long as the host Scheme holds on to
any portion of them.

In the abstract, retaining entire networks in memory as units is not all that wrong—after
all, who knows what portion of the network may receive a new input or deduce something
interesting, and where in the network that deduction may propagate? Especially if the
network has cycles? On the other hand, if we are to use networks to mirror the executions
of long-running programs, we must, as a practical matter, be able to find sections of network
to reclaim.

The right way to do that is an open problem. It relates to the mechanisms of abstraction
the network uses, because those mechanisms will have much to say about the shape of
the network, and perhaps even about which portions of the network are in active use. It
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also relates to the questions of information measurement brought up in Section 6.4, in that
reclaiming the memory associated with a piece of network structure is perhaps tantamount
to saying that none of those propagators will be run soon enough to be worth remembering
(espcially if the abstraction blueprint from which they were built is still around somewhere).
Likewise, questions of decision-making discussed in Section 7.3 are perhaps relevant, because
choosing to reclaim some memory is perhaps an irrevocable and observable effect on the
resource use of the system.

*** TODO (Optional): Talk about distributed garbage collection? ***
In addition to questions of garbage collecting the network structure itself, a propagation

substrate brings up questions of garbage collecting appropriate pieces of the partial infor-
mation structures being propagated. For example, consider a truth maintenance system in
a cell that knows “This cell is 5 if you believe Fred and Bill,” and subsequently discovers
“This cell is 5 if you believe Fred.” The second of these facts logically subsumes the first, so
the first can have no further effect on the computation. Therefore, the first can be forgotten.
In a sense, this is a form of garbage collection, which depends on the invariants of the truth
maintenance system.

Some such garbage collection can be done locally during the updates of individual struc-
tures. For example, the TMSes in the prototype in this dissertation do release the storage
associated with logically subsumed facts within a single TMS inside a single cell. Other such
garbage collection may perhaps involve more global processes. For example, a binary-amb
propagator that is responsible for choosing between A and ¬A should of course be informed
if A and B are discovered to form a nogood, so that it can refrain from choosing A if B
is currently believed. However, there is no a priori reason for it to be informed if B alone
is discovered to form a nogood—after all, what does B have to do with A?—except that
in this particular case the binary-amb should be briefly informed of this, because B alone
being no good subsumes the A and B nogood, and so means that the A and B nogood
should be garbage collected, for which purpose that binary-amb needs to release it (and
then it can also release the B nogood, because it now presumably has no further impact on
the A chooser’s activities). The right way to arrange this particular thing, and other things
like it, is an interesting question.

6.6 Side Effects Always Cause Trouble

No programming system is complete without the ability to emit side effects. To be sure,
many a programming system is useful without that ability, but none of those that lack it
can serve as the basis of a programming language. How, then, should a propagation system
do side effects?

The first stage of the answer is obvious: produce primitive propagators that execute
actions on the world. For example, we could write

(define displayer (function->propagator-constructor display))

to make a propagator that, every time it runs, displays the contents of its input cell and
writes a token (the return value of display) into its output cell.

Unfortunately, what to do next is not as obvious. The displayer described above, used
naively, could run at chaotic times, and could expose the details of partial information
structures—we need something more. For instance, if we wanted to compute and display
an answer to some question, we might find, at some point during our computation, that the
answer is twenty-three if we believe Bob and thirty-five if we believe Fred. If our displayer
happened to be attached to that cell directly, it might then display a representation of that
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truth maintenance system; and then when we later discovered that both Bob and Fred
were actually wrong and the incontrovertible answer was forty-two, the displayer might run
again, and display the forty-two. Perhaps this behavior is not what we want.

The right solution to this problem is an exciting topic for future research. There is
a glimmer of hope in the observation that timings are not always unpredictable in prop-
agator networks: If some region of the network is acyclic, and admits only nothing or
complete, non-refinable values as partial information states, then that portion of the net-
work will behave basically like a normal program, and can therefore be arranged to execute
any side-effecting propagators it contains at predictable points. The technical question of
communication between such regions and other regions where more elaborate partial infor-
mation structures reign remains open; we will only mention the matter again to reflect on
the deep meaning of that question in Section 7.3.

6.7 Input is not Trivial Either

Symmetrically to emitting side effects, no programming system is complete without being
able to observe events in the world and incorporate them in one or another way into a
program’s behavior. How, then, should a propagation system accept input?

The prototype presented in this dissertation cops out. Input is given to a network by
the user calling add-content on some cell from the Scheme read-eval-print loop while the
network is not running. Doing this schedules the neighbors of that cell to be run when
next the scheduler is started, and that allows them to incorporate that input into their
computation.

One particular feature of this is that, in a uniprocess Scheme system, the user cannot
provide input while the rest of the network is running (short of interrupting the run). In
effect, the “outside world,” in its capacity as a source of input, looks to the network like
just one big propagator, which it always runs only when everything else has quiesced.

Clearly, treating the rest of the world as a propagator that a particular network can
choose to “run” when it pleases is untenable as such, but in a concurrent system that might
not be unreasonable. If we say that the scheduler is always running, and will accept input
as it comes, we may have a reasonable high-level story for input (though the meaning of
communicating the network’s quiescence to the user becomes an interesting question).

How to really do a good job of input to propagator networks remains an open question.
I suspect that functional reactive systems, discussed in Section 5.5, will prove useful, both
as a source of inspiration for the architecture, and as a source of concrete suggestions for
particular abstractions (like a user’s keystrokes, or the current time).

6.8 What do we need for Self-Reliance?

The prototype presented in this dissertation is very much embedded in its host Scheme.
What would it take to build a complete, self-hosting system out of it?

As a technical question, this question is the following: what is a sufficient set of primitives
for the propagation mechanism that can be implemented in a host system (like Scheme) so
that all further extensions of the propagation system can be made in the system itself?

That is a good question. The only answer I have at the moment is an enumeration of
the places where the host Scheme is used for extending this prototype.

First, the language for making compound blueprints (see Section 6.2.1) is Scheme. This
is not entirely unreasonable: some textual language is necessary for constructing wiring
diagrams, so why not let it be Scheme? Or, for that matter, any other language we might
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care to invent. This seems like a matter of choosing surface syntax, or of compiling Scheme
descriptions of wiring diagrams to actual propagators that will execute those diagrams.
It will of course be appropriate to add a suitable programmer interface for manipulating
wiring diagrams as data, and the ability to attach them to the network afterward—the
moral equivalent of the traditional Lisp eval.

Second, more worrisomely, delayed blueprints (see Section 6.2.2) are currently also written
in Scheme. This is unfortunate—the host language should not intrude unduly upon so
fundamental an operation of the guest language as creating abstractions. On the other
hand, there is only one object that introduces the transition from networks to Scheme for
this purpose; this problem may therefore be solvable with a dedicated piece of syntax.

Third, arguably even worse, new partial information types are also defined in Scheme.
This breaks down into three pieces: defining how a new type of partial information merges
(methods on the generic function merge), defining how existing propagators pass that infor-
mation along (e.g., methods on the generic functions generic-unpack and generic-flatten
from Appendix A.5), and defining new propagators that do interesting things with that type
of partial information (the moral equivalent of binary-amb). The only answer I have to this
is that since propagation can do anything that Scheme can do, it must be possible to write
the various methods in network diagrams. I have not, however, explored this question in
detail, because the prototype is slow enough as it is that trying to run a self-hosting version
of it threatened to be an exercise in extended waiting. I expect that one interesting question
will arise: if merging the existing content of cell A with some new content is to be done
as a propagation (sub-)process, then it would probably be wise to run that (sub-)process
to completion before permitting the network directly operating on cell A to continue. This
suggests either some sort of recursive scheduling loop, or some sort of scheduler queue
structure. Both of these are rather fearsomely global-looking.

*** TODO (Optional): This touches on control-abstraction.scm, and also on
ideas of atomicity of the operations of various propagators. Maybe abstrac-
tion boundaries are actually a sensible place to also put representation-level
boundaries (e.g., shifts from thinking of a cell as having a TMS to thinking of
it as holding a funny record structure that should be operated on literally (and
happens to represent a TMS to someone else). ***
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Chapter 7

Philosophical Insights

The shift from evaluation to propagation is transformative. You have followed me, gentle
reader, through 115 pages of discussions, examples, implementations, technicalities, conse-
quences and open problems attendant upon that transformation; sit back now and reflect
with me, amid figurative pipe smoke, upon the deepest problems of computation, and the
new way they can be seen after one’s eyes have been transformed.

7.1 On Concurrency

The “concurrency problem” is a bogeyman of the field of computer science that has reached
the point of being used to frighten children. The problem is usually stated equivalently to
“How do we make computer languages that effectively describe concurrent systems?”, where
“effectively” is taken to mean “without tripping over our own coattails”. This problem
statement contains a hidden assumption. Indeed, the concurrency itself is not difficult in
the least—the problem comes from trying to maintain the illusion that the events of a
concurrent system occur in a particular chronological order.

We are used to thinking, both in our everyday lives and in our computer programs, of
things as happening in a sequence. A occurs before B, which occurs before C, etc. Time
of occurrence imposes a total order on events. When two events happen, each of which is
not strictly before the other, we are used to saying that they occurred “at the same time”,
and composing them into a compound simultaneous event consisting of both of them. A
concurrent system, by definition, is one where time becomes a partial order: Perhaps A
occurs before B and before C, and perhaps B and C both occur before D, but perhaps
neither of B or C occurs definitely before the other, and perhaps there is no consistent way
to squish them into a compound simultaneous event. This seems weird and difficult to think
about, especially when programming computers.

In point of fact, concurrency is the natural state of affairs, and synchronicity is what’s
difficult. The physical world in which we live is perfectly concurrent: every little patch of
universe evolves on its own, according to local rules, and physical effects travel from one
patch to another at a finite speed (which we even know: 299,792,458 meters per second).
As a matter of physics, time in the universe is partially ordered: A occurs before B if and
only if A has any chance of influencing B, to wit if and only if light emitted at A can reach
the location of B before B occurs. Over sufficiently large spaces or sufficiently small times
this entails pairs of events neither of which occurred before the other, because light hasn’t
the time to reach in either direction. Moreover, there is no good way to call these events
simultaneous, because C may occur near B so that B is clearly earlier than C, but so that
still neither A nor C is earlier than the other; and also because an observer traveling towards
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the location of A may see A before seeing B, whereas one traveling towards B may see B
before seeing A.

Our experience of time appears as a linear stream of events only because our memory
imposes an order on them, which is the order in which events are remembered to have
occurred. A human society, however, is in principle a concurrent system, because pairs of
events can occur which different people will learn about in different orders, so the order in
which people learned of something cannot unambiguously determine which event happened
first. For example, a father may observe the birth (event A) of what he thinks is his first
child. But he may not know that a one-night stand he had nine months ago resulted in a
pregnancy. That other baby’s mother, participating in that other baby’s birth (event B)
may know nothing of event A, and may presume that her child is the man’s first. When
each later learns about the other, it may perhaps matter which baby is the man’s first-born,
but the participants’ native ordering will not determine an ordering for the events, because
the wife will have learned of A before B, but the mistress will have learned of B before A.

The illusion of synchronous time is sustainable for our society, however, because the patch
of universe we occupy synchronizes far faster than the temporal resolution of “event” our
society expects. We can in principle use clocks and recorded times to disambiguate which of
two events happened first after the fact, if we so choose. It may perhaps come to light that
baby B was born at 3:14pm September 15th in Paris, while baby A at 1:41pm September
15th in New York, putting B first. This is a big enough difference in time and a small
enough difference in space that the necessary relativistic distortions effected by movement
upon clocks and those who read them is insignificant, and so our chronology infrastructure
lets us arbitrate the order of these two events. Indeed, we are so used to the principle that,
with good enough clocks and records, we could arbitrate the order of any two events, that
we think of time as linear, and of all events as ordered, in principle, by which happened
first.

As with the universe, so with electrical circuits (whether etched onto a piece of silicon
or otherwise). A large electrical circuit, observed at a fine timescale, is fundamentally
concurrent: electromagnetic waves, whose behavior we observe as currents and voltages,
travel through it at a finite speed. Components like digital and- or not- gates have definite
propagation delays (the time it takes after inputs are forcibly changed before the output
matches them properly), and components in different parts of the circuit will compute
concurrently. A great deal of engineering effort is expended to build from this substrate
computational devices that provide the illusion of synchronous time. A (“monocore”, if you
will) computer chip contains a clock that emits a periodic electrical signal with reasonably
regular, relatively sharp voltage changes. This signal is distributed throughout the chip,
at considerable difficulty and expense, so as to rise and fall at a predictable time in every
portion of the device. That signal is then used to mark a semantically synchronous passage
of time, because “events” in such a computer are restricted to being observed on voltage
changes in that clock signal. In fact, the proximate limiting factor to the speed of a monocore
is that these voltage changes need to be spaced far enough apart that the waves in the
computation circuits have time to travel hither and yon enough to ensure that these observed
events will be consistent.

The monocore model has become untenable. A monolithic computer with a single global
clock (and modest power consumption) can go only so fast. The obvious thing to do is
to make some variation on multicore computers, which consist of many complete locally-
synchronous computer blocks. Unfortunately, the standard rendition of this idea is fatally
flawed because it provides for a large memory that the cores all share. This large memory
implicitly imposes a linear order on the reads and writes that it experiences. Since synchro-
nizing concurrent things well is hard, the implicit synchronization done by such a memory
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is terrible. As a consequence of the pervasive, terrible synchronization, it appears that all
concurrent programming is hard.

The propagation infrastructure presented in this dissertation offers an alternative view.
Since propagators by design make only local observations and have only local effects, the
structure of a propagator network is analogous to space, and the speed at which information
propagates through it is analogous to the speed of light. Propagator A in one part of a
network may compute something, and propagator B in another may compute something
else. If the consequences of neither computation reach the other before it is made, then in
a sense it doesn’t make sense to ask which happened “first”, because some cells will have
learned of the consequences of A before B, and others of B before A. If, however, the merge
function that determines the laws of physics in this space commutes with respect to A and
B, then it doesn’t matter, because as long as a cell is exposed to the consequences of both
events, it will end up with the same information regardless of the order in which it learns of
them. In this way, the idea of partial information lets us build a propagation infrastructure
that does not force the notion of synchronous time.

Various synchronizations are still possible in this infrastructure. To take an extreme
example, one could imagine a network with a single central cell for holding the current
time, with all propagators observing that cell. We could require that each propagator
seize a lock on that cell before doing anything, and increment the time in the cell when
performing an action, and annotate its results with the time thus read. Such a draconian
strategy would produce a perfectly synchronous network, where every pair of events can be
ordered according to which was first. The big win of using networks as a way to think is
that such a monstrous synchronization is not necessary. It is up to the user of the network
to add appropriate synchronization mechanisms to whatever portions of their computation
they wish. Propagators don’t magically solve the hard problem of synchronizing concurrent
systems, they merely move it where it belongs—away from the “concurrent” and to the
“synchronizing”.

7.2 On Time and Space

At the bottom of modern computation lie the highly parallel laws of electromagnetism,
and the solid state physics of devices, that describe the behavior of electrical circuits.1

An electrical circuit viewed as a computational device, however, is a fixed machine for
performing a fixed computation, which is very expensive to rearrange to perform a different
computation. An electronic computer is a fixed electrical circuit that performs a universal
computation, that is, it implements a layer of indirection which allows it to mimic any
computation that is described to it.

At the same time, a standard computer chip imposes an illusion of sequentiality on the
parallel laws of electrical circuits: we understand the meaning of machine instructions as
sequences of things for the computer to do, with a very powerful notion of the flow of time.
Time is nature’s way of keeping everything from happening at once; space is2 nature’s way
of keeping everything from happening in the same place. A working computation needs at
least one of the distinctions, so since a computer chip simulates a single ideal machine that

1The digital abstraction transforms high-resolution but noisy computations, which we call analog, into noise-
less but low-resolution computations, which we call digital. Noiselessness allows arbitraily large compositions
of computations.

2with apologies to Woody Allen, Albert Einstein, and John Archibald Wheeler, to whom variations of this
quote are variously attributed
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is not differentiated in space, but is conceptually one thing with one series of instructions
and one memory, it is inextricably dependent on time to separate its happenings. So in this
world, space is a point, and time is a totally ordered line.

Pure linear sequences, of course, are insufficient for describing the computations we want
to describe, so we add means of naming portions of such sequences and referring to them,
thus letting the computations dance among the linear instructions as we wish. To the
extent that they share access to memories, however, such named and recombined sequences
still rely on time to separate events. This practice survives today under the retronym
“imperative programming”.

Virtual memory introduces a notion of space. The memories of separate programs running
on the same computer are kept separate from each other by an operating system. Each
program, therefore, has its own flow of time, and the computer devotes itself to advancing
each from time to time.

Lexical scope introduces a finer-grained notion of space. The local names of one piece of
code are automatically separated from those of another, and from different invocations of the
same one.3 Each lexical scope is therefore a sort of point in space; and their interconnections
give space a topology.

More differentiated space permits a lesser reliance on time. The fewer nonlocal effects a
procedure has, the less are the temporal constraints on when it may be invoked. Functional
programming is the discipline of having no nolocal effects except for returning a value, and
therefore being no slave to time except that the consumer of a value must wait until after
its producer.

A great mental shift comes when thinking of the fundamental structure of computations
as trees rather than lines. Instead of sequences like “Add 3 to 4; then multiply that by 7;
add 1 to 5; compute the sine of this; produce the difference of those two”, we can write “(the
difference of (the product of (the sum of 3 and 4) and 7) and (the sine of (the sum of 1 and
5)))”. The nesting structure of the parentheses produces a tree; a node is a computation
combining the results of some subcomputations, each of which may have subcomputations
of its own. Trees have a great advantage over lines in that they clearly expose the fact
that different subexpressions of an expression can be computed independently of each other
and in any order (if they have no interacting side effects)—relative to trees, lines introduce
spurious constraints by arbitrarily placing the computation of one partial result before that
of another. Tree-shaped computing systems can of course be made out of line-shaped ones
with some additional mechanism, such as a recursive interpreter of the tree structure of
a program. Conceptually, the space of such a system is topologically a tree, and time is
inherited from the underlying linear interpreter, and therefore constitutes some traversal of
the tree that is space.

The use of names to refer to reusable partial results of a tree computation turns it into
a directed graph computation. The sequential time of the underlying computer constitutes
a topological sort of the computation, forcing the graph to be acyclic. If we wish the
computer to trace some real phenomenon that has feedback, therefore, we must explicitly
arrange iterations around the feedback loop, either stretching them out through space with
recursive calls or sequencing them in time with mutation.

The next step in the path that goes from lines through trees to acyclic graphs takes us to
arbitrary graphs.4 The propagator networks of this dissertation directly describe (directed)

3Recursion is the reuse of (a conceptually different incarnation of) a piece of code as a subroutine within
that piece of code itself. As such, it requires additional mechanism.

4This is not necessarily where it ends: A graph specifies merely “these two interact; these two do not”. The
real world, and therefore the models we may wish to build, have interactions of varying strengths, the weaker
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graph-shaped computations. The simulation thereof on a sequential computer must queue
up pending computations and go around loops repeatedly, but these issues of control flow
can be made implicit in that simulation. Space then has any graph topology we may desire,
and time is either conceptually avoided by the partial information mechanisms presented
herein, or a haphazard consequence of the accidents of order in our simulation.5

Thus we are come full-circle: from asynchronous devices with local communication;
through computers that forcibly synchronize them; to simulations of asynchronous devices
with local communication. On the way we have gained the great advantage of being able
simply to describe the computation we want rather than having to build a physical device
to perform it, but we have gotten confused about the meaning of time because of a detour
into synchronicity.

7.3 On Side Effects

Side effects are the great bane of elegant models of computation. Everything becomes so
much easier if one merely bans side effects! Suddenly functional programming just works,
logic programming just works, all manner of purely declarative methods can leave the
trouble of optimizing execution to a sufficiently clever implementation, and countless angels
dance on the heads of whatever pins we wish.

Unfortunately, side effects always intrude. There are, of course, many important pro-
grams whose only side effect is to type the final answer out on the screen, but there are
many other important programs that do other things to the world as well. So for a program-
ming system to be considered complete, it must be able to encode programs that produce
side effects, and if that system is to obey some elegant model, then the model must either
accommodate side effects to begin with, or be made to accommodate them by some machina-
tion. In practice, elegant models have an unfortunate tendency toward nonaccommodation
of side effects, and machinations have a nasty tendency toward kludgery.

The essential reason why side effects tend to mess up models of computation is that side
effects inescapably introduce time. An observer can watch the side effects a program emits,
and they are inherently sequenced in time. We want to be able to build programs whose
observable actions are what we want them to be; for that we need the observable actions of
our programs to be predictable from the programs themsevles.

Elegance, on the other hand, is usually gained by separating the flow of time in the
world from the progress of a computation. Such a separation is a source of great power.
Once the nature of the computation no longer inextricably entails the flow of time in the
computer performing it, one gains great freedom. One can choose not to compute things
until and unless they are needed (lazy evaluation); one can let oneself try computations
many times with different guesses for inputs (amb); one can reason about the computation
one is about to do, and take it apart and put it back together to do it faster (fancy compiler
optimizations); one can even specify the computation at a much higher level as a statement
of the problem that needs to be solved, and let the system work out the details of how to
solve it (various declarative programming systems).

There we have the fundamental tension: between giving our computers the freedom to

of which perhaps need only be considered if the stronger do not dictate the answer we are looking for. There
are also computations that may benefit from continuous notions of time and space. Such extensions of the
shape of computation are beyond the scope of this dissertation.

5Engineering useful intermediates is an interesting question; some thoughts on that follow in Section 7.3.
The infrastructure is flexible enough that such intermediates can be engineered in user-space.
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operate as they will on their internal structures, where we are not concerned with the details
of progress but only with its result; and constraining our computers to act the way we wish
externally, where we do in fact care that the dialog “Launch missile? OK / Cancel” show
up (and be answered in the affirmative!) before the missile is actually launched, even though
the computer may have thought very carefully about how to target the missile, and where
it stood to land and upon whose hapless head it stood to detonate, in advance of asking
that question.

The same tension exists in the architecture of human minds. Indeed, people too can both
think and act; and we neither know nor care about the detailed order in which thoughts
occur in the heads of others (unless they are prone to speaking their thoughts alound) but
we do very much both know and care about the actions others perform, and often the order
in which those actions are carried out. The reason I bring up human minds is that we have
a word for the transition humans make between thought and action: “decision”. Since we
have a word for it, perhaps it is an important thing in its own right.

I would then suggest that the kludgery or absence of side effects in elegant models lies in
an inadequate separation between thought and action. Abandoning all respect for the flow
of time is characteristic of thinking. Acting coherently requires attention to time. But the
standard paradigms provide no acknowledgement that thought and action are different, no
barrier between the two, no machinery for transforming one into the other, i.e., for making
decisions. So the result is either that the primitives for action amount to always doing
everything whenever one thinks about doing it, or that the story about thinking offers no
primitives for action at all. In the former case, complete freedom of the order of thoughts
would entail complete chaos in the order of actions, so thought is constrained so that actions
become predictable; in the latter case, the disparate components of a system can each only
think or only act, with painful extralinguistic bridges between the two (which fail in many
ways, for instance being unable to monitor the progress of the thoughts to decide when to
stop them and act).

The propagator paradigm presented here can change the nature of this debate. Propaga-
tion in itself accommodates both thought and action: when a network has many fanins and
cycles, and operates on interesting partial information structures, propagators can run in a
chaotic order, and be run many times, and let the merging of the partial information ensure
that they produce a coherent result at the end; this is thought. On the other hand, when
a network is acyclic and the “partial” information structure is the all-or-nothing structure,
then propagation mimics conventional evaluation, and the order of events is perfectly pre-
dictable. This is action. It is then natural, in this view of the world, to think of building
bridges between these two modes. That is decision. The deciders are propagators that will
accept partial inputs, that can perhaps be refined with the passage of time, and will take
upon themselves the responsibility of picking a moment, making a choice, and committing
to an all-or-nothing answer.

There are many ways a decider could be built; rightly, because they reflect different ways
of making decisions. If the partial information a decider is observing is measurable as to
completeness, for example by the decreasing length of an interval in an interval arithmetic
system, then one could make a decider that waits until the partial information is complete
enough, and then decides. In some cases, like probability distributions, it may even be the
case that some information that is technically still incomplete (lacking, say, a detailed anal-
ysis of the outcomes of an unlikely case) is actually enough to make the decision optimally.
In other cases, it may be necessary to make heuristic guesses about when enough thought
is enough. If the acting portion of a system has to be reactive, it may make sense to build a
decider that has an all-or-nothing input from the acting system that means “decide now”,
and then it can read whatever partial information has been deduced so far and make the
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best decision it can from that. If, on the other hand, the machine has great liberty to think
as it will, it may be possible to build a decider that waits until all of the relevant thinking
propagators have quiesced, and then makes a decision knowing that it knows everything
that the system ever stands to deduce on the topic about which it is deciding.

Presuming that decisions will be made by appropriate deciders, propagators for the actual
side effects are easy enough to define. A box with a side effect can be one that demands
all-or-nothing inputs and does nothing until they are all completely specified. Then, once
that condition obtains, it performs its side effect (exactly once, because its inputs can
never again change without erroring out in a contradiction once they have been specified
completely) and, if we want, writes an output that indicates its effect has been performed
(which we can perhaps use as a condition for the next action, to reliably sequence them).
Such a box need never see the uncertainty and partialness that is useful for solving problems
because the deciders can insulate it; likewise collections of such boxes need not suffer from
the chaotic flow of time in problem solving, for once a decision has been made the timing
of its consequences is predictable.6

6This story suffices if propagators really are independent asynchronous machines that are always trying to
do their thing. If, on the other hand, groups of them are being simulated in a single process, the design just
shown suffices only to require that certain side effects happen before others; whereas we may also want to
predict the time that elapses between them. For that we need to depend on a certain speed of propagation
in the “acting” portions of the system regardless of how much work the “thinking” portions of the system
are doing, which is to say the simulator must be able to provide fairness guarantees.
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Appendix A

Details

I’m meticulous. I like to dot every i and cross every t. The main text had glossed over
a number of details in the interest of space and clarity, so those dots and crossbars are
collected here. A particular objective of this Appendix is to ensure that the results in the
dissertation are identically reproducible on a suitable version of MIT/GNU Scheme,***
TODO (Optional): Specify *** so most of the content here is on that level of detail.
Perhaps the main redeeming feature of the Appendix is Section A.5, which shows how the
generic propagators are arranged, and discusses why they are arranged that way.

A.1 The Generic Operations System

This is lifted almost verbatim from the generic operations mechanism used in the Mechan-
ics [54] Scheme system, with just a couple minor tweaks. This particular piece of machinery
is really incidental to the main point of this dissertation—the only essential thing is to have
a sufficiently flexible generic dispatch mechanism—but I am including it here for complete-
ness of disclosure, and to satisfy the curiosity of pedantic people like me who want access
to all the details.

;;;; Most General Generic-Operator Dispatch

;;; Generic-operator dispatch is implemented here by a discrimination
;;; list, where the arguments passed to the operator are examined by
;;; predicates that are supplied at the point of attachment of a
;;; handler (by ASSIGN-OPERATION).

;;; To be the correct branch all arguments must be accepted by
;;; the branch predicates, so this makes it necessary to
;;; backtrack to find another branch where the first argument
;;; is accepted if the second argument is rejected. Here
;;; backtracking is implemented by OR.
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(define (make-generic-operator arity #!optional name default-operation)
(guarantee-exact-positive-integer arity ’make-generic-operator)
(if (not (fix:fixnum? arity))

(error:bad-range-argument arity ’make-generic-operator))
(if (not (default-object? name))

(guarantee-symbol name ’make-generic-operator))
(if (not (default-object? default-operation))

(guarantee-procedure-of-arity default-operation
arity
’make-generic-operator))

(let ((record (make-operator-record arity)))
(define operator
(case arity

((1)
(lambda (arg)

((or (find-branch (operator-record-tree record) arg win-handler)
default-operation)

arg)))
((2)
(lambda (arg1 arg2)

((or (find-branch (operator-record-tree record) arg1
(lambda (branch)

(find-branch branch arg2 win-handler)))
default-operation)

arg1
arg2)))

(else
(lambda arguments

(if (not (fix:= (length arguments) arity))
(error:wrong-number-of-arguments operator arity arguments))

(apply (or (let loop
((tree (operator-record-tree record))
(args arguments))

(find-branch tree (car args)
(if (pair? (cdr args))

(lambda (branch)
(loop branch (cdr args)))

win-handler)))
default-operation)

arguments)))))
(define (find-branch tree arg win)

(let loop ((tree tree))
(and (pair? tree)

(or (and ((caar tree) arg)
(win (cdar tree)))

(loop (cdr tree))))))
(define (win-handler handler)

handler)
(set! default-operation

(if (default-object? default-operation)
(lambda arguments (no-way-known operator arguments))
default-operation))

(set-operator-record! operator record)
;; For backwards compatibility with previous implementation:
(if (not (default-object? name))

(set-operator-record! name record))
operator))
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(define *generic-operator-table*
(make-eq-hash-table))

(define (get-operator-record operator)
(hash-table/get *generic-operator-table* operator #f))

(define (set-operator-record! operator record)
(hash-table/put! *generic-operator-table* operator record))

(define (make-operator-record arity) (cons arity ’()))
(define (operator-record-arity record) (car record))
(define (operator-record-tree record) (cdr record))
(define (set-operator-record-tree! record tree) (set-cdr! record tree))

(define (operator-arity operator)
(let ((record (get-operator-record operator)))

(if record
(operator-record-arity record)
(error "Not an operator:" operator))))

(define (assign-operation operator handler . argument-predicates)
(let ((record

(let ((record (get-operator-record operator))
(arity (length argument-predicates)))

(if record
(begin

(if (not (fix:= arity (operator-record-arity record)))
(error "Incorrect operator arity:" operator))

record)
(let ((record (make-operator-record arity)))

(hash-table/put! *generic-operator-table* operator record)
record)))))

(set-operator-record-tree! record
(bind-in-tree argument-predicates

handler
(operator-record-tree record))))

operator)

(define defhandler assign-operation)

(define (bind-in-tree keys handler tree)
(let loop ((keys keys) (tree tree))

(let ((p.v (assq (car keys) tree)))
(if (pair? (cdr keys))

(if p.v
(begin

(set-cdr! p.v
(loop (cdr keys) (cdr p.v)))

tree)
(cons (cons (car keys)

(loop (cdr keys) ’()))
tree))

(if p.v
(begin

(warn "Replacing a handler:" (cdr p.v) handler)
(set-cdr! p.v handler)
tree)

(cons (cons (car keys) handler)
tree))))))
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(define (no-way-known operator arguments)
(error "Generic operator inapplicable:" operator arguments))

;;; Utility
(define (any? x)

#t)

A.2 The Scheduler

*** TODO (Optional): Come clean about initialize-scheduler and run? ***

;;;; Basic scheduling system

;;; This scheduler maintains a list of jobs that need to be run. Each
;;; job is a thunk. Jobs are run serially and are not preempted.
;;; When a job exits (normally) it is forgotten and the next job is
;;; run. The jobs are permitted to schedule additional jobs,
;;; including rescheduling themselves. Jobs are presumed idempotent,
;;; and specifically it is assumed acceptable not to count how many
;;; times a given job (by eq?-ness) was scheduled, but merely that it
;;; was scheduled. When the scheduler runs out of jobs, it returns
;;; the symbol ’done to its caller.

;;; The scheduler supplies an escape mechanism: running the procedure
;;; abort-process, with a value, will terminate the entire job run,
;;; and return the supplied value to the scheduler’s caller.
;;; Subsequent calls to the scheduler without first scheduling more
;;; jobs will also return that same value. If abort-process is called
;;; outside the dynamic extent of a run, it deschedules any jobs that
;;; might be scheduled and saves the value for future refernce as
;;; above.

;;; This scheduler is meant as a low-level support for the propagator
;;; network in this dissertation. In that use case, the jobs would be
;;; propagators that the network knows need to be run. Any cells in
;;; the network are invisible to the scheduler, but presumably help
;;; the network schedule more propagators to run (namely those that
;;; may be interested in the cell’s goings on).

;;; The public interface is
;;; (initialize-scheduler) clears all scheduler state
;;; (alert-propagators jobs) schedules a list (or set) of jobs
;;; (alert-all-propagators!) reschedules all jobs that were ever scheduled
;;; (run) runs scheduled jobs until done
;;; (abort-process x) terminates the run returning x
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(define *alerted-propagators*)
(define *alerted-propagator-list*)
(define *abort-process*)
(define *last-value-of-run*)
(define *propagators-ever-alerted*)
(define *propagators-ever-alerted-list*)

(define (initialize-scheduler)
(clear-alerted-propagators!)
(set! *abort-process* #f)
(set! *last-value-of-run* ’done)
(set! *propagators-ever-alerted* (make-eq-hash-table))
(set! *propagators-ever-alerted-list*

(list ’*propagators-ever-alerted-list*))
’ok)

(define (any-propagators-alerted?)
(< 0 (hash-table/count *alerted-propagators*)))

(define (clear-alerted-propagators!)
(set! *alerted-propagators* (make-strong-eq-hash-table))
(set! *alerted-propagator-list* (list ’*alerted-propagator-list*)))

;; Turning this off makes the order in which propagators are run vary
;; chaotically. That is not supposed to cause trouble in principle,
;; but a reproducible run order can be valuable for debugging the
;; infrastructure. The chaotic variation also causes variations in the
;; *number-of-calls-to-fail* when doing dependency directed backtracking.
(define *reproducible-run-order* #t)

(define (order-preserving-insert thing table lst)
(hash-table/lookup
table
thing
(lambda (value) ’ok)
(lambda ()

(hash-table/put! table thing #t)
(push! lst thing))))

(define (push! headed-list thing)
(set-cdr! headed-list (cons thing (cdr headed-list))))

(define (ordered-key-list table lst)
(if *reproducible-run-order*

(list-copy (cdr lst))
(hash-table/key-list table)))

129



(define (alert-propagators propagators)
(for-each
(lambda (propagator)

(if (not (procedure? propagator))
(error "Alerting a non-procedure" propagator))

(order-preserving-insert
propagator *propagators-ever-alerted* *propagators-ever-alerted-list*)
(order-preserving-insert
propagator *alerted-propagators* *alerted-propagator-list*))

(listify propagators))
#f)

(define alert-propagator alert-propagators)

(define (alert-all-propagators!)
(alert-propagators
(ordered-key-list *propagators-ever-alerted*

*propagators-ever-alerted-list*)))

(define (the-alerted-propagators)
(ordered-key-list *alerted-propagators*

*alerted-propagator-list*))

(define (with-process-abortion thunk)
(call-with-current-continuation
(lambda (k)

(fluid-let ((*abort-process* k))
(thunk)))))

(define termination-trace #f)

(define (abort-process value)
(if termination-trace

(ppc ‘(calling abort-process with ,value and ,*abort-process*)))
(if *abort-process*

;; if the propagator is running
(begin (clear-alerted-propagators!)

(*abort-process* value))
;; if the user is setting up state
(begin (clear-alerted-propagators!)

(set! *last-value-of-run* value))))

(define (run-alerted)
(let ((temp (the-alerted-propagators)))

(clear-alerted-propagators!)
(for-each (lambda (propagator)

(propagator))
temp))

(if (any-propagators-alerted?)
(run-alerted)
’done))

(define (run)
(if (any-propagators-alerted?)

(set! *last-value-of-run* (with-process-abortion run-alerted)))
*last-value-of-run*)
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A.3 Primitives for Section 3.1

(define adder (function->propagator-constructor (handling-nothings +)))
(define subtractor (function->propagator-constructor (handling-nothings -)))
(define multiplier (function->propagator-constructor (handling-nothings *)))
(define divider (function->propagator-constructor (handling-nothings /)))
(define absolute-value (function->propagator-constructor (handling-nothings abs)))
(define squarer (function->propagator-constructor (handling-nothings square)))
(define sqrter (function->propagator-constructor (handling-nothings sqrt)))
(define =? (function->propagator-constructor (handling-nothings =)))
(define <? (function->propagator-constructor (handling-nothings <)))
(define >? (function->propagator-constructor (handling-nothings >)))
(define <=? (function->propagator-constructor (handling-nothings <=)))
(define >=? (function->propagator-constructor (handling-nothings >=)))
(define inverter (function->propagator-constructor (handling-nothings not)))
(define conjoiner (function->propagator-constructor (handling-nothings boolean/and)))
(define disjoiner (function->propagator-constructor (handling-nothings boolean/or)))

A.4 Data Structure Definitions

Our data structures are simple tagged vectors. Mercifully, we do not use vectors elsewhere
in the system, so no confusion is possible. Also mercifully, the define-structure macro
from MIT Scheme [21] automates the construction and abstraction of such data structures.

Intervals:

(define-structure
(interval
(type vector) (named ’interval) (print-procedure #f))

low high)

(define interval-equal? equal?)

Supported values:

(define-structure
(v&s (named ’supported) (type vector)

(constructor supported) (print-procedure #f))
value support)

(define (more-informative-support? v&s1 v&s2)
(and (not (lset= eq? (v&s-support v&s1) (v&s-support v&s2)))

(lset<= eq? (v&s-support v&s1) (v&s-support v&s2))))

(define (merge-supports . v&ss)
(apply lset-union eq? (map v&s-support v&ss)))

Lists of supported values for truth maintenance:

(define-structure
(tms (type vector) (named ’tms)

(constructor %make-tms) (print-procedure #f))
values)

(define (make-tms arg)
(%make-tms (listify arg)))
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Synthetic premises for hypothetical reasoning

(define-structure
(hypothetical (type vector) (named ’hypothetical) (print-procedure #f)))

turn out to need only their identity (and the hypothetical? type testing predicate).
To support the implicit global worldview, we put sticky notes on our premises indicating

whether or not we believe them. A “sticky note” is the presence or absence of the premise
in question in a global eq-hash table. This mechanism is nice because we can use arbitrary
objects as premises, without having to make any arrangements for this in advance. Since
the table holds its keys weakly, this does not interfere with garbage collection.

(define *premise-outness* (make-eq-hash-table))

(define (premise-in? premise)
(not (hash-table/get *premise-outness* premise #f)))

(define (mark-premise-in! premise)
(hash-table/remove! *premise-outness* premise))

(define (mark-premise-out! premise)
(hash-table/put! *premise-outness* premise #t))

We attach premise-nogoods to premises the same way as their membership in the global
worldview.

(define *premise-nogoods* (make-eq-hash-table))

(define (premise-nogoods premise)
(hash-table/get *premise-nogoods* premise ’()))

(define (set-premise-nogoods! premise nogoods)
(hash-table/put! *premise-nogoods* premise nogoods))

We also provide a procedure for resetting the states of all premises. This is mostly useful
for being able to use symbols as premises in multiple different examples without worrying
about spilling information.

(define (reset-premise-info!)
(set! *premise-outness* (make-eq-hash-table))
(set! *premise-nogoods* (make-eq-hash-table)))

Finally, we need the counter that tracks our fun failure statistics:

(define *number-of-calls-to-fail* 0)

A.5 Generic Primitives

I have not solved the problem of producing a nice, uniform generic mechanism for handling
partial information types. The main desiderata for such a mechanism are that it be addi-
tive, namely that new partial information types can be added to it without disturbing its
handling of the old; that it permit interoperation between partial information types that can
reasonably interoperate; and that new partial information types can be additively adjoined
to interoperating groups. I have achieved that to my satisfaction for the partial information
types used in this dissertation, but I am not convinced that my solution is general. I do
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not consider this a great difficulty, however—managing diverse partial information types is
a separate issue from the value of propagation and partial information in general.

The sections that follow handle all the partial information types used in this dissertation
with two slightly competing mechanisms. In brief, the first mechanism is to define a generic
operation for each primitive, and add appropriate methods to it for each partial informa-
tion type. The second mechanism is to wrap those generic operations in a common generic
wrapper, and handle suitable partial information types by adding methods to the wrapper,
independently of what the underlying primitive operations are. These methods are pre-
sented and used in the following sections; I reflect on their relative merits and shortcomings
in a retrospective Appendix A.5.5.

A.5.1 Definitions

We start by defining the primitives we will use as generic functions, so that we can give
them arbitrary behavior on our various partial information structures.

(define generic-+ (make-generic-operator 2 ’+ +))
(define generic-- (make-generic-operator 2 ’- -))
(define generic-* (make-generic-operator 2 ’* *))
(define generic-/ (make-generic-operator 2 ’/ /))
(define generic-abs (make-generic-operator 1 ’abs abs))
(define generic-square (make-generic-operator 1 ’square square))
(define generic-sqrt (make-generic-operator 1 ’sqrt sqrt))
(define generic-= (make-generic-operator 2 ’= =))
(define generic-< (make-generic-operator 2 ’< <))
(define generic-> (make-generic-operator 2 ’> >))
(define generic-<= (make-generic-operator 2 ’<= <=))
(define generic->= (make-generic-operator 2 ’>= >=))
(define generic-not (make-generic-operator 1 ’not not))
(define generic-and (make-generic-operator 2 ’and boolean/and))
(define generic-or (make-generic-operator 2 ’or boolean/or))

We also define general generic operators in which to wrap these operations so we can han-
dle some partial information types (namely nothing, v&s, and tms) uniformly irrespective
of the particular underlying operation. These operators are loosely inspired by Haskell’s
Monad typeclass [29, 42].

*** TODO (Optional): Say somewhere that unpack and flatten are plumbing;
merge appears to be a different kind of plumbing. ***

(define (generic-bind thing function)
(generic-flatten (generic-unpack thing function)))

(define generic-unpack
(make-generic-operator 2 ’unpack

(lambda (object function)
(function object))))

(define generic-flatten
(make-generic-operator 1 ’flatten (lambda (object) object)))

We will additionally use a wrapper that handles n-ary Scheme procedures by binding each
argument in turn.
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(define (nary-unpacking function)
(lambda args

(let loop ((args args)
(function function))

(if (null? args)
(function)
(generic-bind
(car args)
(lambda (arg)
(loop (cdr args)

(lambda remaining-args
(apply function (cons arg remaining-args))))))))))

Both of those bits of generic machinery having been built, we define our propagators
as machines that will first attempt to process their arguments with nary-unpacking, and
bottom out to the generic operations underneath if there is no uniform handler defined for
the partial information structure they are exposed to.

(define adder (function->propagator-constructor (nary-unpacking generic-+)))
(define subtractor (function->propagator-constructor (nary-unpacking generic--)))
(define multiplier (function->propagator-constructor (nary-unpacking generic-*)))
(define divider (function->propagator-constructor (nary-unpacking generic-/)))
(define absolute-value (function->propagator-constructor (nary-unpacking generic-abs)))
(define squarer (function->propagator-constructor (nary-unpacking generic-square)))
(define sqrter (function->propagator-constructor (nary-unpacking generic-sqrt)))
(define =? (function->propagator-constructor (nary-unpacking generic-=)))
(define <? (function->propagator-constructor (nary-unpacking generic-<)))
(define >? (function->propagator-constructor (nary-unpacking generic->)))
(define <=? (function->propagator-constructor (nary-unpacking generic-<=)))
(define >=? (function->propagator-constructor (nary-unpacking generic->=)))
(define inverter (function->propagator-constructor (nary-unpacking generic-not)))
(define conjoiner (function->propagator-constructor (nary-unpacking generic-and)))
(define disjoiner (function->propagator-constructor (nary-unpacking generic-or)))

Now we are ready for our first partial information type. Adding support for nothing
(which is analogous to Haskell’s Maybe monad) is a just matter of adding the right methods
to our uniform generic facility:

(defhandler generic-unpack
(lambda (object function) nothing)
nothing? any?)

;;; This handler is redundant but harmless
(defhandler generic-flatten

(lambda (thing) nothing)
nothing?)

A.5.2 Intervals

I will use interval arithmetic as an example of implementing support for a partial infor-
mation type using the underlying generic functions themselves, rather than the uniform
nary-unpacking mechanism. It is possible that intervals fit into the uniform mechanism,
but I don’t want to think about how to do it, and the example is valuable. So I attach
interval arithmetic handlers to the appropriate generic operations directly—having both
mechanisms around offers maximum flexibility.
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(defhandler generic-* mul-interval interval? interval?)
(defhandler generic-/ div-interval interval? interval?)
(defhandler generic-square square-interval interval?)
(defhandler generic-sqrt sqrt-interval interval?)

We also define machinery for coercing arguments of compatible types to intervals when
appropriate.

(define (->interval x)
(if (interval? x)

x
(make-interval x x)))

(define (coercing coercer f)
(lambda args

(apply f (map coercer args))))

(defhandler generic-* (coercing ->interval mul-interval) number? interval?)
(defhandler generic-* (coercing ->interval mul-interval) interval? number?)
(defhandler generic-/ (coercing ->interval div-interval) number? interval?)
(defhandler generic-/ (coercing ->interval div-interval) interval? number?)

A.5.3 Supported Values

Supported values are the first place where we can show off the advantages of the uniform
mechanism from Appendix A.5.1. Justifications are a form of information that is amenable
to a uniform treatment,1 and we can specify that treatment by attaching appropriate han-
dlers to generic-unpack and generic-flatten.

Generic-unpack is textbook:

(defhandler generic-unpack
(lambda (v&s function)

(supported
(generic-bind (v&s-value v&s) function)
(v&s-support v&s)))

v&s? any?)

If the incoming value is supported, strip off the supports, operate on the underlying value,
and add the supports back on again afterward.

Generic-flatten turns out to be much more interesting, because we don’t know ahead
of time the exact shape of the object we want to flatten. Specifically, how to flatten
a supported value depends on what is actually supported: if something primitive like a
number is supported, then the flattening is the supported value itself. If the supported
object inside is nothing then we would like the flattened result to be nothing, without the
support.2 But of greatest interest, if the supported value is itself a supported value, we want
the result to be a single supported value that is supported by the union of the supports.

1

zero?

zero?

×

If we are willing to forgo the refinement that (* 0 x) is 0 irrespective of the dependencies of
x. It is not clear how to implement that refinement in the nary-unpacking system directly,
but it can be implemented in the propagator system with the diagram on the right; or by
an analogous composition of generic operations in Scheme.

2On the logic that if Fred tells you nothing, you still know nothing, regardless of Fred. This is a consistent
choice, but alternatives are possible; one may, for instance, care to record that Fred has considered the
matter some and still produced nothing. Explorations of such alternatives are deferred to future work.
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We take advantage of the flexibility of predicate dispatch to encode all three of those possi-
bilities as separate handlers for generic-flatten. Besides being aesthetically more pleasing
than a big cond, this will let us seamlessly add support for TMSes in Appendix A.5.4.

(defhandler generic-flatten
(lambda (v&s) v&s)
v&s?)

(defhandler generic-flatten
(lambda (v&s) nothing)
(lambda (thing) (and (v&s? thing) (nothing? (v&s-value thing)))))

(defhandler generic-flatten
(lambda (v&s)

(generic-flatten
(supported
(v&s-value (v&s-value v&s))
(merge-supports v&s (v&s-value v&s)))))

(lambda (thing) (and (v&s? thing) (v&s? (v&s-value thing)))))

In order to merge supported values with other things properly, we need a notion of what’s
appropriate to coerce into a supported value. The notion used here is simpleminded, but
at least somewhat extensible.

(define *flat-types-list* ’())

(define (flat? thing)
(apply boolean/or (map (lambda (type) (type thing)) *flat-types-list*)))

(define (specify-flat type)
(if (memq type *flat-types-list*)

’ok
(set! *flat-types-list* (cons type *flat-types-list*))))

(specify-flat symbol?)
(specify-flat number?)
(specify-flat boolean?)
(specify-flat interval?)

(define (->v&s thing)
(if (v&s? thing)

thing
(supported thing ’())))

(defhandler merge (coercing ->v&s v&s-merge) v&s? flat?)
(defhandler merge (coercing ->v&s v&s-merge) flat? v&s?)

A.5.4 Truth Maintenance Systems

Adjusting the primitives for truth maintenance also turns out to be a uniform transforma-
tion. Generic-unpack is again textbook:

(defhandler generic-unpack
(lambda (tms function)

(let ((relevant-information (tms-query tms)))
(make-tms (list (generic-bind relevant-information function)))))

tms? any?)
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If the input is a TMS, query it, operate on that, and pack the result up into a (one-item)
TMS. The only choice made here is that we are following the philosophy set out in the main
text of operating on the strongest possible consequences of what we currently believe (as
found by tms-query) rather than on all variations of everything we might believe.

Generic-flatten is again more interesting. If the input is a TMS, we recursively flatten
all its contents, coerce the results into TMS value lists, and make a new TMS out of that.3

(defhandler generic-flatten
(lambda (tms)

(let ((candidates
(apply append

(map tms-values
(map ->tms

(map generic-flatten (tms-values tms)))))))
(if (null? candidates)

nothing
(make-tms candidates))))

tms?)

But we also need to extend the code for flattening a v&s, because we want to do something
interesting if we find a v&s with a TMS inside (namely incorporate the support of that v&s
into the consequences of that TMS).

(defhandler generic-flatten
(lambda (v&s)

(generic-flatten
(make-tms
(generic-flatten
(supported (tms-query (v&s-value v&s)) (v&s-support v&s))))))

(lambda (thing) (and (v&s? thing) (tms? (v&s-value thing)))))

*** TODO (Optional): Explain that this is the ant’s-eye version? ***
Finally, to merge TMSes in cells, we need a mechanism to coerce things to TMSes, and

methods on merge that use it. These methods use a layer of indirection because we redefine
tms-merge in the text (to handle contradictions).

(define (->tms thing)
(cond ((tms? thing) thing)

((nothing? thing) (make-tms ’()))
(else (make-tms (list (->v&s thing))))))

(define (the-tms-handler thing1 thing2)
(tms-merge thing1 thing2))

(defhandler merge the-tms-handler tms? tms?)
(defhandler merge (coercing ->tms the-tms-handler) tms? v&s?)
(defhandler merge (coercing ->tms the-tms-handler) v&s? tms?)
(defhandler merge (coercing ->tms the-tms-handler) tms? flat?)
(defhandler merge (coercing ->tms the-tms-handler) flat? tms?)

3If you are wondering why this operates on the whole contents of the TMS rather than querying it like
generic-unpack does so pointedly above, read about the troubles of the nary-unpacking mechanism in
Appendix A.5.5.
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A.5.5 Discussion of generic mechanisms

The uniform generic machinery developed in Appendix A.5.1, namely the nary-unpacking
function and its supporting generic-unpack and generic-flatten, may seem overly com-
plex at first. Indeed, for functions like +, only the moral equivalent of generic-unpack is
necessary, and generic-flatten is just superfluous complexity. Why, then, is it necessary
to add it?

The reason is epitomized by switch and car. The switch propagator is nontrivial es-
sentially because its base function can return a partial information state even when given
fully known arguments. What I mean is that if + is given numbers, it is guaranteed to
return a number; the code to lift + to accept TMSes over numbers and produce TMSes
over numbers is consequently simpler than the full nary-unpacking caboodle. Switch, in
contrast, can return nothing even if its inputs are both perfectly normal fully known values
(in fact, exactly when its control argument is #f). It therefore does not suffice to implement
a switch on TMSes by simply unpacking two TMSes, operating on the internal flat values,
and packing the TMSes back up again.

For switch this could perhaps have been kludged, but car (at least as requested by the
“Recursive Partial Information” strategy in Section 6.3.1) is even worse. Consider trying
to take the car of a TMS over pairs of TMSes over numbers. You start by unpacking the
top-level TMS to get a raw pair. Then you call the base car on it, but the answer, instead
of being a raw value, is another TMS! So you have to flatten. Indeed, switch’s behavior
can also be seen as something that requires flattening.

The same requirements also apply to apply; that is, if one is applying a supported
procedure, the value returned by that procedure must depend upon the justification of
the procedure. But if the inputs to the procedure also carried justifications, or something
else that needed justifying happened during the procedure’s execution, then the procedure
may produce a justified answer, and the justification of the procedure itself must then be
flattened onto the justification of the result it returns. The similarity of if with apply is
not surprising given the Church encoding of booleans as procedures that ignore one or the
other of their arguments; the solution is the same.

Haskell’s storied Monad typeclass [29, 42] also contains ideas of unpacking and flattening,
albeit sliced a bit differently. As such it constitutes evidence that unpacking and flattening
are valuable kinds of plumbing. Therefore, I bit the monadic bullet and wrote code that
does both unpacking and flattening generically (as opposed to just generic unpacking, which
would have sufficed for functions like +).

Unfortunately, nary-unpacking does not quite satisfy the demands I place on generic
mechanisms. It’s good enough for the present purpose, but getting it right in general is
worth further thought. In my experience so far, it falls down in four ways: First, inter-
val arithmetic was far easier to do with specific generic operations than with the general
mechanism; *** TODO (Optional): Is monadic interval arithmetic an open prob-
lem? [?] *** second, the general mechanism treats the arguments of symmetric binary
functions asymmetrically; third, the communication mechanism between generic-unpack
and generic-flatten can violate the invariants of the partial information structures I am
using; and fourth, it seems completely inapplicable to the merge generic procedure.

For an example of the asymmetry problem, consider what happens if one tries to add a
TMS and nothing. If the TMS is the first argument seen by nary-unpacking, it will duti-
fully unpack that TMS, save the justification of the result, and make its recursive call. The
recursive call will then notice that the second argument was nothing and return nothing
immediately, which will then get packed up into a TMS with the saved justification, and
only flattened into nothing at the end. In contrast, the specific generic function mecha-
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nism admits a handler that looks for nothing anywhere in the input and returns nothing
immediately. On the other hand, the specific mechanism offers no good way to attach that
handler to all the primitive generic operations at once, without looping over a list of them.

Perhaps this asymmetry problem can be solved for binary functions (which are of course
the majority of interesting symmetric functions) by defining an appropriate generic-binary-unpacking.
Such a wrapper could have the appropriate symmetric handlers, but it would need to repli-
cate the work of generic-flatten internally to merge, for example, two supports from the
two arguments to, say, +.

For an example of the violated invariants problem, consider again taking the car of a
pair inside a TMS. You start with unpacking the TMS and saving the justification of the
pair. Then you need to flatten that justification onto whatever you get out of the pair with
car, so what you really need to pass to generic-flatten is the justification and the car,
separately. The code as I have written it, however, just blindly wraps that car up in a
record structure that looks like a TMS and carries the needed justification; with no respect
for whether or not that car violates the intended invariants of the TMS data type. Since
this is only a communication channel between generic-unpack and generic-flatten, that
doesn’t cause too much trouble, but the methods on generic-flatten need to be aware
that they will be asked to handle data structures whose invariants may be wrong. That’s
why the generic-flatten method on TMSes defined in Appendix A.5.4 looks so weird.

Perhaps this invariant violation problem can be solved by a better interface between
generic-unpack and generic-flatten; or perhaps there is a deep problem here, and
Haskell made bind the basic primitive for a reason. The separation of generic-unpack
and generic-flatten has served my purpose well, on the other hand, because it allowed
seamless interoperation between the v&s and tms partial information types, and additive
adjoining of the latter to a system that already contained the former. On the other hand,
perhaps that same additivity can be achieved with monad transformers [34] as well.

Inapplicability to merge may well not be a problem. Thinking this out carefully is open to
future work; but I suspect that the reason why unpack and flatten don’t seem to be useful
for merge is that merge is not their client but their peer—not merely another function, but
a new kind of plumbing. If so, it is perhaps a kind of plumbing that is only applicable to
propagator networks, because only they expect to experience multiple sources writing to
the same place and needing to be merged.

A.6 Miscellaneous Utilities

I told you on page 125 that I was meticulous! There’s really nothing at all interesting to see
here. But if you really want to know every detail of how the code in this dissertation works,
this section is the only thing left between the text and a bare MIT Scheme.*** TODO
(Optional): Version? Platform? ***

(define (for-each-distinct-pair proc lst)
(if (not (null? lst))

(let loop ((first (car lst)) (rest (cdr lst)))
(for-each (lambda (other-element)

(proc first other-element))
rest)

(if (not (null? rest))
(loop (car rest) (cdr rest))))))
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(define (sort-by lst compute-key)
(map cdr

(sort (map (lambda (thing)
(cons (compute-key thing) thing))

lst)
(lambda (pair1 pair2)

(< (car pair1) (car pair2))))))

(define (listify object)
(cond ((null? object) object)

((pair? object) object)
(else (list object))))

(define (identity x) x)

(define (ignore-first x y) y)

(define (default-equal? x y)
(if (and (number? x) (number? y))

(close-enuf? x y 1e-10)
(equal? x y)))

(define (close-enuf? h1 h2 #!optional tolerance scale)
(if (default-object? tolerance)

(set! tolerance *machine-epsilon*))
(if (default-object? scale)

(set! scale 1.0))
(<= (magnitude (- h1 h2))

(* tolerance
(+ (* 0.5

(+ (magnitude h1) (magnitude h2)))
scale))))

(define *machine-epsilon*
(let loop ((e 1.0))

(if (= 1.0 (+ e 1.0))
(* 2 e)
(loop (/ e 2)))))

(define (pairwise-union nogoods1 nogoods2)
(apply
append
(map (lambda (nogood1)

(map (lambda (nogood2)
(lset-union eq? nogood1 nogood2))

nogoods2))
nogoods1)))
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